Back to Top Skip to main content Skip to sub-navigation

Acute Flaccid Myelitis: Case Report

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

In August 2018, the U.S. Centers for Disease Control and Prevention (CDC) noted an increased number of reports of patients in the U.S. having symptoms clinically compatible with acute flaccid myelitis (AFM). AFM is characterized by rapid onset of flaccid weakness in one or more limbs and distinct abnormalities of the spinal cord gray matter on magnetic resonance imaging (MRI). Clinical and laboratory data suggest that AFM is associated with an antecedent viral infection. AFM may be difficult to differentiate from other causes of paralysis and, given that it is rare, has the potential to be overlooked. This case highlights important clinical characteristics of AFM and emphasizes the importance of including AFM in the differential diagnosis when evaluating active duty service members and Military Health System (MHS) beneficiaries presenting with paralysis.

 

CASE REPORT

On 23 September 2018, the previously healthy 9-year-old daughter of an active duty service member presented to the Fort Belvoir Community Hospital (FBCH) emergency department with sore throat, left earache, headache, neck pain, and history of fever to 101.0°F.

Symptoms of cough and congestion started approximately two weeks prior, on 10 September 2018. Unlike her younger brother, who had similar symptoms and improved, the patient’s symptoms worsened such that she missed school on Friday, 14 September 2018 and Monday, 17 September 2018. The patient attempted to resume normal activities but nearly fainted on 19 September 2018 while testing for her Purple Belt in Tae Kwon Do. On 20 September 2018, the patient developed nausea, anorexia, malaise, dizziness, and fever to 100.5°F. By 23 September 2018, her temperature had increased to 101.0°F and her symptoms progressed to include symptoms that led to her emergency room visit.

When the patient presented to the emergency department on 23 September 2018, her temperature was 98.8°F. Her left tympanic membrane appeared erythematous. Her neck was tender and lymphadenopathy was noted; Kernig and Brudzinski signs could not be elicited. The patient was diagnosed with left otitis media and neck strain. She was treated with ibuprofen 400 mg and dexamethasone 10 mg by mouth. She was discharged home on amoxicillin and ibuprofen.

By 25 September 2018, day 16 of illness, the patient had difficulty turning on the bathroom light due to weakness in her upper extremities. She also had weakness in her neck and imbalance such that she had difficulty ambulating. The patient presented to the pediatric clinic in a wheelchair with headache, neck pain, imbalance, and generalized weakness. Her examination was remarkable for left facial weakness and neck pain radiating to the lower back with neck flexion. She was directed to the emergency department for further evaluation and treatment.

On examination in the emergency department,  the patient’s vital signs were stable; her temperature was 99.6°F. Examination of her head, eyes, ears, nose and throat revealed dull tympanic membranes, pharyngeal erythema, and left facial weakness consistent with Bell’s palsy. Upper extremity weakness and nuchal rigidity were also noted. The patient’s chest x-ray was clear and computed tomography (CT) of the head was normal. Her rapid strep test was negative. A monospot was ordered (results not reported). Her white blood cell count (WBC) was 6,600 cells/µL with neutrophilic predominance (81.6%); hematocrit and platelets were normal. Her basic metabolic panel was also normal. A lumbar puncture was performed revealing clear, colorless cerebrospinal fluid (CSF) with a white blood count of 77 cells/µL (normal 0-5 cells/ µL) (neutrophils 19%; lymphocytes 64%; monocytes 17%), red blood count 0 cells/ µL; protein 49 mg/dl (normal 15-45 mg/ dl); glucose 64 mg/dl (normal 60-80 mg/dl). Gram stain of the CSF was negative. A rapid multiplex CSF PCR panel was negative for Escherichia coli Ag; Hemophilus influenzae rRNA; Listeria Monocytogenes rRNA; Neisseria meningitidis rRNA; Streptococcus agalactiae Ag; Streptococcus pneumoniae rRNA; Cytomegalovirus DNA; Herpes Simplex Virus 1 DNA; Herpes Simplex Virus DNA; Human Herpesvirus 6 DNA; Parechovirus RNA; Varicella Zoster Virus DNA; Enterovirus RNA; and Cryptococcus neoformans rRNA. Blood and CSF cultures were sent.

The patient was treated presumptively for meningitis with intravenous ceftriaxone in the emergency room and she was admitted to the hospital. Additional history revealed that the patient had a bull’s-eye rash while living in Utah 16 months prior, and that she was treated presumptively for Lyme disease at the time. Her history also revealed that she had complained of knee and ankle pain since August 2018. Although the patient lived and vacationed in wooded areas where Lyme disease is prevalent, she had no history of a tick bite.

The patient developed a rash after her first dose of ceftriaxone and was switched to meropenem. She was also treated with doxycycline for presumed Lyme disease. CSF and blood cultures were negative at 48-hours and meropenem was discontinued. Lyme serology and Lyme CSF PCR were negative on 28 September 2018. Doxycycline was continued due to high suspicion for Lyme disease.

On 29 September 2018, magnetic resonance imaging (MRI) of the brain (without contrast) was normal. MRI of the cervical spine revealed abnormal central T2 signal within the spinal cord with expansion extending from the level of cervical vertebrae C2–C3 to C6–C7 consistent with myelitis. Given the clinical presentation, MRI findings, and CSF pleocytosis, the patient was diagnosed with acute flaccid myelitis (AFM). She was treated with methylprednisolone 1 gram IV daily for 3 days.

Repeat MRI of the brain (with contrast) and MRI of the internal auditory canals were performed on 1 October 2018 and were normal. MRI of the thoracic spine was normal on 2 October 2018. Additional testing included a respiratory virus culture which was negative for influenza A/B, parainfluenza, adenovirus, and respiratory syncytial virus. Tests for Mycoplasma pneumoniae IgM, Bartonella, West Nile Virus, and Ehrlichia were negative. Myelin-associated Glycoprotein-Sulfated Glucuronic Paragloboside IgM was less than 1:10 (negative) and Neuromyelitis Optica Antibody IgG was less than 1.5 U/ml (negative).

The patient’s weakness worsened during the first 2 days following admission then improved over the course of her hospitalization. Weakness was limited to the face, neck, and upper extremities. Her facial weakness was associated with transient left facial numbness and arm weakness was associated with reduced tendon reflexes. The patient did not experience lower extremity weakness, dysphagia, or respiratory compromise. Joint pain involving the knees, ankles, wrists and elbows was noted. Gabapentin provided partial relief.

The patient was discharged home in stable condition on 3 October 2018. In spite of her diagnosis, doxycycline was continued for the unlikely possibility of Lyme disease. Follow-up with primary care, pediatric neurology, pediatric infectious disease, and occupational and physical therapy was scheduled.

 

EDITORIAL COMMENT

The incidence of acute flaccid paralysis (AFP) in the U.S. decreased dramatically following the introduction of inactivated polio vaccine (IPV) in 1955 and oral polio vaccine (OPV) in 1961. However, cases of AFP attributable to oral trivalent attenuated polio vaccine1 and other viruses (including enterovirus [EV-A71],2 enterovirus D68 [EV-D68],3 Epstein-Barr virus,4 and West Nile virus5) continue to occur. The estimated incidence of AFP in the U.S. among those under 15 years of age is 1.4 per 100,000 person-years.6

In August 2012, the California Department of Public Health (CDPH) was notified of 3 cases of AFP associated with anterior myelitis. In spite of laboratory testing, a causative agent could not be found. Following these reports, CDPH posted alerts requesting early reporting of cases and collection of clinical samples. A case was defined as flaccid paralysis in at least one limb consistent with anterior myelitis as indicated by neuroimaging of the spine or electrodiagnostic studies (e.g., nerve conduction studies and electromyography) and with no known alternative etiology. Between June 2012 and June 2014, 23 cases of AFP with anterior myelitis were identified. Common features included an upper respiratory or gastrointestinal prodrome less than 10 days before AFP onset and CSF pleocytosis. The median age of patients was 10 years (range=1–73 years). The etiology of AFP among reported cases was unclear; poliovirus was determined to be an unlikely cause.7

On 3 October 2014, CDC posted a Morbidity and Mortality Weekly Report (MMWR) Early Release describing a cluster of 9 children evaluated at Children’s Hospital Colorado for acute neurologic illness characterized by extremity weakness or cranial nerve dysfunction (or both) following a febrile illness. Among the 8 children who had magnetic resonance imaging of the spinal cord, 7 had lesions of the gray matter spanning multiple levels, and 8 had mild to moderate CSF pleocytosis. Based on reported clinical and anatomic characteristics, the illness was referred to as acute flaccid myelitis (AFM), to distinguish it from other forms of AFP.8 Given that the cases occurred during a national outbreak of EV-D68 and laboratory testing among some cases suggested recent EV-D68 infection, EV-D68 was identified as a potential cause.9 However, a definitive cause of the illness cluster could not be determined.10

From August through December 2014, 120 AFM cases from 34 states were reported to CDC. A case was defined as any person aged 21 years of age or younger, with acute onset of limb weakness and a spinal MRI revealing lesions predominantly of the gray matter. During the 5-month period, the crude nationwide AFM incidence among persons 21 years of age or younger was 0.32 cases/100,000 population/year. The most common site of involvement on MRI was the cervical spinal cord. CSF pleocytosis was present in 81% of cases. The median age was 7.1 years (range=0.4–20.8 years). Most affected individuals experienced a respiratory or febrile illness prior to the onset of limb weakness.11

In 2015, the Council of State and Territorial Epidemiologists (CSTE) and CDC updated the case definition for AFM to include CSF-based criteria. The current case definition for AFM is a person with onset of acute flaccid limb weakness, AND a magnetic resonance image showing a spinal cord lesion largely restricted to gray matter, and spanning one or more vertebral segments (confirmatory  evidence), OR cerebrospinal fluid (CSF) with pleocytosis (CSF white blood cell count >5 cells/ µL); CSF protein may or may not be elevated (supportive evidence).12 In spite of the broadened case definition, the number of cases reported to CDC dropped to 22 confirmed cases in in 2015. The count increased again in 2016 to 149 confirmed cases, then dropped in 2017 to 33 confirmed cases.

In August 2018, CDC noted an increase in the number of reports of patients with potential AFM.13 On 23 August 2018, CDC issued a notice via the Epidemic Information Exchange (Epi-X) to increase clinician awareness and provide guidance for case reporting. An MMWR Early Release dated 13 November 2018 reported 106 confirmed cases of AFM. This number increased to 165 confirmed cases among 320 reported cases on 14 December 2018.14

The case described in this report meets the CSTE and CDC case defini tion for AFM. Similar to other confirmed cases, limb weakness was accompanied by decreased deep tendon reflexes and preceded by a febrile illness. Of note, in the case reported here, the interval between onset of respiratory symptoms and onset of neurological symptoms (16 days) was longer than the median interval of 7 days (range=1–12 days) reported by CDC in 2017.15 The patient’s history of a bull’s eye rash and residence in a wooded area where Lyme is prevalent introduced a distracting clue into diagnostic deliberations. It also highlights the ambiguity and challenges clinicians face when they encounter rare conditions that have significant clinical overlap, an undefined etiology, and an evolving case definition.

Rapid identification of potential cases and early reporting have the potential to expedite identification of the etiologic agent or agents responsible for AFM, progressive characterization of clinical features, detection of risk factors, and identification of preventive measures.

Clinicians caring for patients with limb weakness should maintain a wide differential diagnosis, inquire about recent fever, respiratory and gastrointestinal symptoms, and perform MRI promptly. While AFM is not a reportable disease, potential cases of AFM should be referred to military Preventive Medicine departments and reported in the Disease Reporting System Internet (DRSi) under “Any Other Unusual Condition, Not Otherwise Specified.” Clinicians should also report potential cases of AFM to their state or local health departments, and to the CDC. In addition, specimens (i.e., cerebrospinal fluid, serum, stool, and respiratory samples) should be sent to CDC for standardized testing and expanded testing protocols. Information related to specimen collection and shipping is available at https://www.cdc.gov/acute-flaccid-myelitis/hcp/instructions.html.

Author affiliations: Walter Reed National Military Medical Center, Bethesda, MD (CPT Donahue); Armed Forces Health Surveillance Branch, Silver Spring, MD (CDR Clausen); Uniformed Services University of the Health Sciences, Bethesda, MD (Dr. Malloy); Defense Health Agency National Capital Region Medical Directorate (COL Dennison); Fort Belvoir Community Hospital, VA (CPT Falcon).

Disclaimer: The views expressed herein are those of the authors and do not necessarily reflect the official policy or position of the Army, the Department of Defense, or the United States Government.

Disclosure: The authors have no financial or non-financial interest to disclose.

 

REFERENCES

1. Platt LR, Estivariz CF, Sutler RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J of Inf Dis. 2014; 210(supp1):S380–S389.

2. Teoh HL, Mohammad SS, Britton PN, et al. Clinical Characteristics and Functional Motor  Outcomes of Enterovirus 71 Neurological Disease in Children. JAMA Neurol. 2016;73(3):300–307.

3. Greninger AL, Naccache SN, Messacar K, et al. A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012-14): a retrospective cohort study. Lancet Infect Dis. 2015;15(6):671–682.

4. Wong M, Connolly AM, Noetzel MJ. Poliomyelitis-like syndrome associated with Epstein-Barr virus infection. Pediatr Neurol. 1999;20:235–237.

5. Sejvar JJ, Bode AV, Marfin AA, et al. West Nile virus-associated flaccid paralysis. Emerg Infect  Dis. 2005; 11(7):1021–1027.

6. Zangwill KM, Yeh SH, Wong EJ, et al. Paralytic syndromes in children: epidemiology and relationship to vaccination. Pediatr Neurol. 2010;42:206–212.

7. Ayscue P, Van Haren K, Sheriff H, et al. Acute Flaccid Paralysis with Anterior Myelitis — California, June 2012–June 2014. MMWR. 2014;63:903–905.

8. Centers for  Disease  Control  and  Prevention. Notes from  the  field:  acute  flaccid  myeli tis among persons aged =21 years—United  States, August 1-November 13, 2014. MMWR. 2015;63:1243–1244.

9. Sejvar JJ, Lopez AS, Cortese MM, et al. Acute flaccid myelitis in the United States, August-December 2014: results of nationwide surveillance. Clin Infect Dis. 2016;63(6):737–745.

10. Pastula DM, Aliabadi N, Haynes AK, et al. Acute neurologic illness of unknown etiology in children — Colorado, August–September 2014. MMWR. 2014;63(40):901–902.

11. Messacar K, Schreiner TL, Van  Haren  K, et al. Acute flaccid myelitis: a clinical review of U.S. cases 2012-2015. Ann Neurol. 2016;80:326–328.

12. Council of State and Territorial Epidemiologists. Standardized Case Definition of Acute Flaccid Myelitis. https://c.ymcdn.com/sites/www.cste.org/resource/resmgr/2017PS/2017PSFinal/17-ID-01.pdf. Accessed on 10 December 2018.

13. McKay SL, Lee AD, Lopez AS, et al. Increase in Acute Flaccid Myelitis — United States, 2018. MMWR Early Release. 2018;67:1–3.

14. Centers for Disease Control and Prevention. Acute Flaccid Myelitis. https://www.cdc.gov/acute-flaccid-myelitis/afm-surveillance.html. Accessed on 10 December 2018.

15. Bonwitt J, Poel A, DeBolt C, et al. Acute flaccid myelitis among children--Washington, September-November 2016. MMWR. 2017;66(31):826–829.















You also may be interested in...

Hyponatremia

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Rhabdomyolysis

Infographic
4/13/2018
Rhabdomyolysis

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Heat Illness

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

There were a total of 2,163 incident cases of heat illness among active component service members, including 464 cases of heat stroke and 1,699 cases of heat exhaustion.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Cardiovascular Diseases

Infographic
4/4/2018
At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Mental Health Problems

Infographic
4/4/2018
This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection | Global Health Engagement

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report
<< < ... 11 12 13 14 > >> 
Showing results 181 - 195 Page 13 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.