Back to Top Skip to main content Skip to sub-navigation

Outbreak of Cyclosporiasis in a U.S. Air Force Training Population, Joint Base San Antonio–Lackland, TX, 2018

Cyclosporiasis Cyclosporiasis

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

Diarrheal illnesses have an enormous impact on military operations in the deployed and training environments. While bacteria and viruses are the usual causes of gastrointestinal disease outbreaks, 2 Joint Base San Antonio–Lackland, TX, training populations experienced an outbreak of diarrheal illness caused by the parasite Cyclospora cayetanensis in June and July 2018. Cases were identified from outpatient medical records and responses to patient questionnaires. A confirmed case was defined by diarrhea and laboratory confirmation, and patients without a positive lab were classified as suspected cases. In cluster 1, 46 suspected and 7 confirmed cases occurred among technical training students who reported symptom onset from 12 June to 21 June. In cluster 2, 18 suspected and 14 confirmed cases in basic military training trainees reported symptom onset from 29 June to 8 July. Numerous lessons from cluster 1 were applied to cluster 2. Crucial lessons learned during this cyclosporiasis outbreak included the importance of maintaining clinical suspicion for cyclosporiasis in persistent gastrointestinal illness and obtaining confirmatory laboratory testing for expedited diagnosis and treatment.

WHAT ARE THE NEW FINDINGS?    

Diarrheal disease due to the protozoan Cyclospora cayetanensis had not been previously reported among American military trainees in the U.S. This report describes the life cycle of the protozoan and highlights the difficult nature of source finding and the importance of clinical suspicion for cyclosporiasis in persistent gastrointestinal illness.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Up to 60% of deployed U.S. troops have reported episodes of diarrhea during their deployment. The main causes of these diarrheal illnesses are bacterial and viral, but C. cayetanensis may cause protracted, relapsing gastroenteritis impacting operational readiness and mission effectiveness. This report shares recommendations for future cyclosporiasis outbreak investigations.

BACKGROUND

Diarrheal illnesses have an enormous impact on military operations. Historically, up to 60% of deployed U.S. troops have reported episodes of diarrhea during their deployment.1–3 Understandably, diarrheal illness negatively impacts operational readiness and mission effectiveness in deployment locations, as it results in increased healthcare service use, loss of man-hours, and transient critical shortages.4 However, this negative impact is also readily apparent within the unique environment of military training. Moreover, although the majority of military gastrointestinal outbreaks in both the deployed and training environments have been bacterial (e.g., Escherichia coli) or viral (e.g., norovirus) in origin,5–7 recent outbreaks in the U.S. civilian population as well as an outbreak in military training facilities in El Salvador indicate that the protozoan Cyclospora cayetanensis may also pose a threat.8

C. cayetanensis is a coccidian protozoan parasite that causes protracted, relapsing gastroenteritis known as cyclosporiasis.9 Cyclosporiasis is a waterborne and foodborne illness associated with contaminated water or fresh produce, usually imported. The illness has an average incubation period of 7 days, and symptoms can last up to 6 weeks. Excreted oocysts require 1 to 2 weeks outside the human host to undergo sporulation before becoming infectious9; therefore, person-to-person transmission is unlikely. While the course of illness can be self-limited, treatment with trimethoprimsulfamethoxazole can shorten the duration of illness and oocyte excretion.9

From 2000 through 2016, the Centers for Disease Control and Prevention (CDC) tracked 33 U.S. outbreaks of cyclosporiasis.10 In 2017, CDC received notification of 1,065 laboratory-confirmed cases of cyclosporiasis from 40 states, including cases associated with international travel.11 This report describes an outbreak of diarrheal disease caused by C. cayetanensis among U.S. military technical school students (cluster 1) and basic military trainees (cluster 2) at Joint Base San Antonio–Lackland (JBSA–Lackland), TX, during June and July 2018. These outbreaks were unrelated to the 2 national outbreaks of cyclosporiasis that occurred during the same time period.

METHODS

Setting

JBSA–Lackland is the only location for U.S. Air Force basic military training (BMT). Recruits come from all parts of the U.S. and from numerous international locations for 7.5 weeks of BMT. At any given time, there are 5,000 to 8,000 BMT trainees distributed across 6 training squadrons. The squadrons are divided into 40- to 50-member training flights. Members of each flight share a common dormitory room and perform all training activities as a unit. Contact between trainees of differing flights is limited to shared common touch surface areas in the Dining Facilities Administration Center (DFAC), classroom hallways, and stairwells. All meals are eaten in DFACs except for a prepackaged meal upon arrival to JBSA–Lackland and meals during the last week of training, when off-base privileges are granted.

Medical care for trainees is provided at the Reid Health Services Center during regular business hours or at the Family Emergency Center at Wilford Hall Ambulatory Surgical Center after hours. On average, 2 to 3 trainees per day present to Reid Health Services Center with nausea, vomiting, and/or diarrhea.

Case identification

Cases were identified from review of outpatient medical records from Reid Health Services Center and administered questionnaires. In cluster 1 (technical trainees), 2 teams with reported cases were administered an open-ended questionnaire, and in cluster 2 (BMT trainees), the flight with the greatest number of confirmed cases was administered a questionnaire that gathered information about fresh vegetables and fruits known to have been consumed during training.

For the purposes of this outbreak investigation, a confirmed case of cyclosporiasis was defined by the presence of diarrhea with or without vomiting between 12 June and 8 July 2018 accompanied by a positive gastrointestinal pathogen polymerase chain reaction (PCR) for Cyclospora in a stool specimen. Without a positive lab, a case was classified as a suspected case. Bivariate analysis was carried out to determine whether associations existed between food exposures and illness. Statistical analysis was performed using OpenEpi v3.01.12 One-tailed p values <.01 were considered statistically significant.

RESULTS

Two distinct clusters of cyclosporiasis cases occurred between 12 June and 8 July 2018. Cluster 1 (n=53) occurred among technical training students who reported with symptoms from 12 June through 21 June and included 46 suspected and 7 confirmed cases (Figure 1). Five of the suspected cases did not have documented onset dates. Diarrhea was reported by 100% of cluster 1 cases, with 45% reporting vomiting, and 64% reporting nausea (data not shown). Cluster 2 (n=32) occurred among BMT trainees and included 18 suspected and 14 confirmed cases who reported symptom onset between 29 June and 8 July (Figure 2). Of the 18 suspected cases, 5 cases did not have documented onset dates. In this cluster of 32 cases, 100% reported diarrhea, 44% reported vomiting, and 72% reported nausea (data not shown). One additional confirmed BMT case was reported, but it did not occur in the timeframe of either cluster and was not considered in the analysis.

In cluster 1, the first technical student sought medical care on 13 June for diarrhea; 3 additional students followed on 14 June, and 7 followed on 15 June. The earliest report of symptom onset was on 12 June. At this point, a gastrointestinal disease cluster was suspected in 2 technical training squadrons and gastrointestinal pathogen panel PCRs were ordered. One stool sample was returned to the clinic for testing and tested positive for Cyclospora on 19 June. The next positive Cyclospora PCR was reported on 21 June. One suspected case tested positive for Salmonella. Reported symptom onset peaked 14 June and continued through 21 June (Figure 1). In addition to identifying cases in the clinic, investigators conducted mass briefings from 22 June through 28 June, during which questionnaires were administered to members of 2 technical squadrons to elicit information on food and water exposures. However, data obtained from this open-ended questionnaire lacked the specificity needed to examine associations between exposures to potential food sources and illness.

In cluster 2, the first trainee sought medical care on 30 June, and 5 more trainees sought care on 2 July; the earliest report of symptom onset was on 29 June. Gastrointestinal pathogen panel PCRs were already being ordered on all patients with gastrointestinal symptoms visiting the clinic. Three positive Cyclospora PCRs were reported on 3 July, 2 of which belonged to 1 flight. Reported symptom onset peaked on 1 July and continued through 8 July (Figure 2). On 6 July, questionnaires were administered to the trainees in the flight with the most laboratory-confirmed cyclosporiasis cases (n=6). The questionnaire captured information on the fresh food items eaten after arrival at San Antonio, TX. Among the 49 trainees who responded to the BMT questionnaire, 2 additional suspected cases were identified. None of the suspected or confirmed cases from this flight reported departing from the Midwest states that were experiencing a contemporaneous cyclosporiasis outbreak (i.e., IA, IL, MN, and WI). Bivariate analysis of data from the 49 questionnaire respondents demonstrated statistically significant positive associations between confirmed cases and 4 exposures: blueberries (odds ratio [OR]=25.51; p=.001), blackberries (OR=23.11; p=.001), cherry tomatoes (OR=11.25; p=.006), and oranges (OR=11.20; p=.004) (Table 1). No statistically significant associations were identified between other possible food exposures and illness.

Public health investigations were performed at training facilities and DFACs. No DFAC food workers who served confirmed cases reported illness during the outbreak. During inspections of the DFACs, there were no discrepancies noted with respect to Cyclospora. Food vendors that service all DFACs at JBSA–Lackland were questioned, and no concerns other than this outbreak were brought to investigators’ attention.

EDITORIAL COMMENT

During the months of June and July 2018, JBSA–Lackland experienced 2 clusters of cyclosporiasis affecting 2 technical training squadrons and (primarily) 1 BMT flight. Investigations of these clusters did not reveal a specific source of infection; therefore, at the time of the outbreak, there were no known connections to the larger national outbreaks related to Del Monte Fresh Produce vegetable trays or salads from McDonald’s restaurants distributed by Fresh Express that were contemporaneously occurring.13,14 At the time of this publication, there were no further confirmed cases of cyclosporiasis in the JBSA–Lackland training population.

Similar to many CDC-reported cyclosporiasis outbreaks, even though there were statistically significant associations with some food items (i.e., blueberries, blackberries, oranges, and cherry tomatoes), a source of the pathogen could not be conclusively determined despite a 2-week food history questionnaire, detailed interviews, and DFAC inspections.10 Potable water and DFAC food from shared sources serve all of the training and permanent populations on JBSA–Lackland. Yet these clusters of cyclosporiasis were restricted to a few specific squadrons and flights. Because of the restricted nature of the outbreak, source exposure was presumed to be most likely through a contaminated batch of produce, and therefore potable water sources were not examined.

Lessons from the investigation response to cluster 1 were implemented in cluster 2. For example, the questionnaire used during cluster 1 did not have enough granularity to determine food associations; therefore, during cluster 2, the investigative team designed a questionnaire based on DFAC menus. Outbreak response also shifted from an early emphasis on treatment to confirmatory testing, providing more accurate case counts and distinction of gastroenteritis due to other potential pathogens (e.g., Salmonella). Lastly, the emphasis on diagnostic testing during cluster 2 resulted in fewer courses of antimicrobial treatment for presumptive diagnoses of cyclosporiasis.

Despite unique opportunities during the investigation of cluster 2 (e.g., control of food and a known cohort), no definitive source of infection was found. The typically long incubation period for cyclosporiasis and delays between symptom onset and diagnosis confirmation represented challenges to identifying the Cyclospora source. In addition, food recall was likely low, even with a comprehensive questionnaire listing fresh food from the DFAC. Even though specific foods were identified, food testing was not feasible because of the short shelf life and immediate use of fresh foods. Moreover, given that Cyclospora has relatively recently emerged in the U.S. (outbreaks have only been reported since the 1990s),10 clinical suspicion of this uncommon parasite as a cause for acute gastrointestinal illness is low. Testing posed another challenge; Cyclospora was not a component of routine ova and parasite testing and had to be requested specifically. Therefore, providers relied on molecular methods in diagnosing cyclosporiasis, and at the onset of the outbreak, the local supplies of testing kits were quickly depleted. Perhaps the most important challenge in determining the source of the outbreak was the low case numbers, which prevented conclusive determination of a source despite observed associations with blueberries, blackberries, cherry tomatoes, and oranges.

The JBSA–Lackland Public Health Flight and Preventive Medicine team collaborated with county, state, and national agencies and shared lessons learned. Perhaps the most crucial lessons learned were the importance of clinical suspicion for cyclosporiasis in persistent gastrointestinal illness and the importance of confirmatory laboratory testing for expedited diagnosis and treatment.

Author affiliations: Trainee Health Surveillance, 559th Medical Group, JBSA–Lackland, TX (Maj Pawlak, Maj Gottfredson); Public Health Flight, 559th Medical Group, JBSA–Lackland, TX (Lt Col Cuomo); 559th Medical Group, JBSA–Lackland, TX (Lt Col White)

Disclaimer: The views expressed are those of the authors and do not reflect the official views or policy of the Department of Defense or its components.

 

REFERENCES

1. Sanders JW, Putnam SD, Gould P, et al. Diarrheal illness among deployed U.S. military personnel during Operation Bright Star 2001—Egypt. Diagn Microbiol Infect Dis. 2005;52(2):85–90.

2. Sanders JW, Putnam SD, Riddle MS, Tribble DR. Military importance of diarrhea: lessons from the Middle East. Curr Opin Gastroenterol. 2005;21(1):9–14.

3. Monteville MR, Riddle MS, Baht U, et al. Incidence, etiology, and impact of diarrhea among deployed US military personnel in support of Operation Iraqi Freedom and Operation Enduring Freedom. Am J Trop Med Hyg. 2006;75(4):762–767.

4. Sanders JW, Putnam SD, Frankart C, et al. Impact of illness and non-combat injury during Operations Iraqi Freedom and Enduring Freedom (Afghanistan). Am J Trop Med Hyg. 2005;73(4):713–719.

5. Bohnker BK, Thornton S. Explosive outbreaks of gastroenteritis in the shipboard environment attributed to norovirus [Letter to the Editor]. Mil Med. 2003;168(5):iv.

6. Riddle MS, Smoak BL, Thornton SA, Bresee JS, Faix DJ, Putnam SD. Epidemic infectious gastrointestinal illness aboard U.S. Navy ships deployed to the Middle East during peacetime operations—2000–2001. BMC Gastroenterol. 2006;6(9).

7. Riddle MS, Sanders JW, Putnam SD, Tribble DR. Incidence, etiology, and impact of diarrhea among long-term travelers (US military and similar populations): a systematic review. Am J Trop Med Hyg. 2006;74(5):891–900.

8. Kasper MR, Lescano AG, Lucas C, et al. Diarrhea outbreak during U.S. military training in El Salvador. PloS One. 2012;7(7):e40404.

9. Ortega YR, Sanchez R. Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin Microbiol Rev. 2010;23(1):218–234.

10. Centers for Disease Control and Prevention. U.S. Foodorne Outbreaks of Cyclosporiasis—2000–2016. https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/foodborneoutbreaks.html. Accessed 24 September 2018.

11. Centers for Disease Control and Prevention. Cyclosporiasis Outbreak Investigations—United States, 2017. https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/2017/index.html. Accessed 24 September 2018.

12. Sullivan KM, Dean A, Soe MM. OpenEpi: a web-based epidemiologic and statistical calculator for public health. Public Health Rep. 2009;124(3):471–474.

13. Centers for Disease Control and Prevention. Multistate Outbreak of Cyclosporiasis Linked to Del Monte Fresh Produce Vegetable Trays—United States, 2018: Final Update. https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/2018/a-062018/index.html. Accessed 24 September 2018.

14. Centers for Disease Control and Prevention. Multistate Outbreak of Cyclosporiasis Linked to Fresh Express Salad Mix Sold at McDonald’s Restaurants—United States, 2018: Final Update. https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/2018/b-071318/index.html. Accessed 24 September 2018.

Symptom onset among cases in cluster 1 (technical training students)Symptom onset among cases in cluster 2 (basic military training)Attack rates of confirmed illness based on food exposures in the 49 BMT trainee respondents

You also may be interested in...

Brief Report: Prevalence of Screening Positive for Post-Traumatic Stress Disorder Among Service Members Following Combat-Related Injury

Article
8/1/2021
U.S. Army Sgt. Arne F. Eastlund of the California Army National Guard’s 49th Military Police Brigade was nearly killed in 2005 in Baghdad, Iraq, during Operation Iraqi Freedom. An improvised explosive device destroyed his military vehicle and killed comrade Sgt. 1st Class Isaac S. Lawson. Eastlund survived and has continued serving Cal Guard even as a retired war veteran. (U.S. Army National Guard photo provided by Arne Eastlund)

Recommended Content:

Medical Surveillance Monthly Report

Mental Health Disorders, Behavioral Health Problems, Fatigue and Sleep Outcomes in Remotely Piloted Aircraft/Manned Aircraft Pilots, and Remotely Piloted Aircraft Crew, U.S. Air Force, 1 October 2003–30 June 2019

Article
8/1/2021
U.S. Air Force Capt. Danielle ‘Dani’ Pavone, an MQ-9 pilot with the 110th Wing, speaks during a training scenario through a plexiglass barrier to Staff Sgt. Justin Brandt, an MQ-9 sensor operator at the Battle Creek Air National Guard Base, Battle Creek, Michigan. The plexiglass mitigates risk of coronavirus transmission during the pandemic. (U.S. Air National Guard photo by Staff Sgt. Bethany Rizor)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance of Mental and Behavioral Health Care Utilization and Use of Telehealth, Active Component, U.S. Armed Forces, 1 January 2019–30 September 2020

Article
8/1/2021

Recommended Content:

Medical Surveillance Monthly Report

Update: Mental Health Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2016–2020

Article
8/1/2021
 Capt. Elrico Hernandez, battalion physician assistant for 2nd Battalion, 3rd Infantry Regiment, 3rd Stryker Brigade Combat Team, 2nd Infantry Division, discusses a training scenario that is part of the first Primary Care Behavioral Health seminar. The new program is being undertaken by medical care providers throughout United States Division-North in order to provide better mental health screening for Soldiers

Update: Mental Health Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report

Long-Acting Reversible Contraceptive Use, Active Component Service Women, U.S. Armed Forces, 2016–2020

Article
7/1/2021
Lt. Col. Paula Neemann, 15th Healthcare Operations Squadron clinical medicine flight commander, demonstrates several birth options, such as an intrauterine device, at the 15th MDG's contraceptive clinic at Joint Base Pearl Harbor-Hickam, Hawaii, May 6, 2021. The contraceptive clinic opened June 7 to service beneficiaries and provide same-day procedures without a referral. (U.S. Air Force photo by 2nd Lt. Benjamin Aronson)

Long-Acting Reversible Contraceptive Use, Active Component Service Women, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report

Oral Cavity and Pharynx Cancers, Active Component, U.S. Armed Forces, 2007–2019

Article
7/1/2021
Moist snuff, chewing tobacco is placed between cheek and gum. All varieties of smokeless tobacco can cause harmful effects on the oral cavity.

Oral Cavity and Pharynx Cancers, Active Component, U.S. Armed Forces, 2007–2019

Recommended Content:

Medical Surveillance Monthly Report

The Evolution of Military Health Surveillance Reporting: A Historical Review

Article
7/1/2021
The inaugural issue of the Medical Surveillance Monthly Report

The Evolution of Military Health Surveillance Reporting: A Historical Review

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Medical Encounters for Snakebite Envenomation, Active and Reserve Components, U.S. Armed Forces, 2016–2020

Article
6/1/2021
Masters of camouflage, the Sidewinder Rattlesnakes are out and about aboard Marine Corps Logistics Base Barstow, California, May 11. Watch where you put your hands and feet, and observe children and pets at all times, as this is the natural habitat for these venomous snakes and a bite can cause serious medical problems. Notice the sharp arrow-shaped head with pronounced jaws, and the raised eye sockets, as well as the telltale rattles. Keep in mind, however, that rattles can be broken or lost, so you may or may not hear a rattle before they strike to protect themselves.

Brief Report: Medical Encounters for Snakebite Envenomation, Active and Reserve Components, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report

The Cost of Lower Extremity Fractures Among Active Duty U.S. Army Soldiers, 2017

Article
6/1/2021
X-ray image of a fractured tibia.

Recommended Content:

Medical Surveillance Monthly Report

Early Identification of SARS-CoV-2 Emergence in the Department of Defense via Retrospective Analysis of 2019–2020 Upper Respiratory Illness Samples

Article
6/1/2021
Army Maj. Raymond Nagley, S-3 officer assigned to the 50th Regional Support Group (RSG), receives a nasal swab to screen for COVID-19 at Fort Hood, Texas, on Feb. 5, 2021, from Spc. Yoali Muniz, a lab tech assigned to the 7406th Troop Medical Clinic, based in Columbia, Missouri. The 50th RSG, a Florida Guard unit based in Homestead, Florida, is preparing for deployment to Poland. (U.S. Army Guard photo by Sgt. 1st Class Shane Klestinski)

Early Identification of SARS-CoV-2 Emergence in the Department of Defense via Retrospective Analysis of 2019–2020 Upper Respiratory Illness Samples

Recommended Content:

Medical Surveillance Monthly Report

Department of Defense Mid-Season Vaccine Effectiveness Estimates for the 2019– 2020 Influenza Season

Article
6/1/2021
201019-N-PC065-1062 NORFOLK (Oct. 19, 2020) Hospital Corpsman 2nd Class Sashee Robinson, assigned to amphibious transport dock ship USS Arlington (LPD 24), administers an influenza vaccine to Machinery Repairman 2nd Class Hannah Swearingen in medical aboard the Arlington. Influenza vaccines are an annual medical readiness requirement throughout the Department of Defense. (U.S. Navy photo by Mass Communication Specialist 2nd Class John Bellino/Released)

Department of Defense Mid-Season Vaccine Effectiveness Estimates for the 2019– 2020 Influenza Season

Recommended Content:

Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2020

Article
5/1/2021
Navy Lt. James E. Lamb, left, and Sgt. Ryan Eskandary exercise aboard USS Pearl Harbor, May 6. Lamb is a Minneapolis native and serves as a firepower control team leader. Eskandary hails from St. Paul, Minn., and serves as a forward observer. Both serve with the 11th Marine Expeditionary Unit’s command element. The unit embarked USS Makin Island, USS New Orleans and USS Pearl Harbor in San Diego, Nov. 14, beginning a seven-month deployment to the Western Pacific, Horn of Africa and Middle East regions. (U.S. Navy photo by Cpl. Tommy Huynh, Arabian Sea/Released)

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2020

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2020

Article
5/1/2021
A U.S. Marine Corps drill instructor with Golf Company, 2nd Recruit Training Battalion, motivates a recruit during a Marine Corps Martial Arts Program (MCMAP) training session at Marine Corps Recruit Depot, San Diego, Aug. 2, 2021. The drill instructors ensured recruits conducted the techniques safely and effectively during the training session. (U.S. Marine Corps photo by Cpl. Zachary T. Beatty)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2020

Article
5/1/2021
U.S. Army Col. Kris Marshall, co-director of Exercise Agile Spirit 2021, salutes during a closing ceremony August 6, 2021 at Orpholo Training Area, Georgia. Agile Spirit 21 promotes regional stability and security, while increasing readiness, strengthening partner capabilities and fostering trust. Agile Spirit provides vital opportunities, not only for multiple U.S. services to work together, but also for integrated, total force training with U.S. Reserve and National Guard units and our partner nations’ militaries to ensure interoperability. (U.S. Army National Guard photo by Cpl. Rydell Tomas)

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2020

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2020

Article
5/1/2021
MAYPORT, Fla. (Sept. 18, 2020) – Cmdr. Mary Gracia, a pediatric nurse practitioner at Naval Branch Health Clinic Mayport, checks five-year-old Gabriella’s ears. Gracia, a native of McAllen, Texas, says, “It's been an honor and a privilege to impart my expertise to the children of our active duty members who are graciously serving our country. These children, our future leaders, prayers lifted and bountiful blessings for each one. And to the children I've helped during overseas deployments, prayers continued.” (U.S. Navy photo by Jacob Sippel, Naval Hospital Jacksonville/Released).

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2020

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.