Back to Top Skip to main content

Case Report: Hansen’s Disease in an Active Duty Soldier Presenting with Type 1 Reversal Reaction

Ulcer along the interspace between the patient’s right index and middle fingers. Photograph courtesy of Brooke Army Medical Center Medical Photography. Ulcer along the interspace between the patient’s right index and middle fingers. Photograph
courtesy of Brooke Army Medical Center Medical Photography.

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

Leprosy, or Hansen’s disease (HD), is caused by the bacterium Mycobacterium leprae and is a significant cause of morbidity worldwide. Clinical manifestations range from isolated skin rash to severe peripheral neuropathy. Treatment involves a prolonged course of multiple antimicrobials. Although rare in the U.S., with only 168 new cases reported in 2016, HD remains a prevalent disease throughout the world, with 214,783 new cases worldwide that same year.1 It remains clinically relevant for service members born in and deployed to endemic regions. This report describes a case of HD diagnosed in an active duty soldier born and raised in Micronesia, a highly endemic region.

CASE REPORT

In May 2018, a 21-year-old male soldier presented with right hand swelling and ulcer formation along the interspace between his index and middle fingers while he was deployed to Eastern Europe (Figure 1). He first developed a blister at that site after washing a tank several days earlier, and it subsequently progressed to an ulcer. The ulcer was initially assessed as a third-degree burn, and he was transferred to Brooke Army Medical Center (Joint Base San Antonio-Fort Sam Houston, TX) for management on 11 May 2018. At that time, the patient denied any pain but described gradual loss of sensation to his right hand dating back to January 2018. The patient had been otherwise healthy except for a right hand burn injury during basic training in early 2017, which had completely healed without complications. He denied any close contacts with Hansen's disease (HD). The patient had enlisted in the Army in January 2017 from the Federated States of Micronesia and completed initial entry training in June 2017 at Fort Benning, GA. He completed advanced individual training at Fort Riley, KS, and then was deployed to Europe in November 2017.

In May 2018, the patient successfully underwent full-thickness skin graft of his ulceration but continued to experience edema and eventually lost intrinsic motor function of his right hand. He remained at Fort Sam Houston, where a nerve conduction study in July 2018 revealed severe median, ulnar, and radial neuropathies in the right forearm. Around that time, the patient noticed eruption of annular, hyperpigmented, erythematous plaques on his right medial arm, which spread to his bilateral limbs and trunk (Figures 2a, 2b). These symptoms coincided with new edema and numbness involving his left hand. In September 2018, magnetic resonance imaging revealed perineural edema involving nerve groups of his distal right arm (Figure 3a, 3b). The patient was referred to dermatology, where examination noted thickening of peripheral nerves, including the greater auricular nerve (Figure 4); a clinical diagnosis of HD was made. Skin biopsy showed tuberculoid granulomas extending along adnexal structures and nerves (Figure 5a, 5b). Fite staining was negative for acid-fast organisms. Polymerase chain reaction testing at the National Hansen’s Disease Program (NHDP) was also negative for Mycobacterium leprae. Given his histopathology, edema, and rapid progression of neurologic impairment, the patient was diagnosed with paucibacillary leprosy complicated by type 1 reversal reaction. In consultation with the NHDP, the patient was started on clarithromycin 500 mg daily and minocycline 100 mg daily in October 2018. Prednisone 60 mg daily was started for the patient’s type 1 reversal reaction and neuropathy. Steroids were tapered over the ensuing 6 months, while methotrexate 12.5 mg weekly was added as a steroid-sparing agent.

At follow-up in December 2018, the patient showed improvement in the appearance of his skin lesions and the edema in both hands, with some improvement in motor and sensory exam. At follow-up in May 2019, he remained on clarithromycin, minocycline, and methotrexate. He showed further improvement in the appearance of his skin lesions. However, he continued to have persistent right hand weakness and persistent left ulnar neuropathy. He was referred to the medical evaluation board and was discharged from the Army in August 2019.

EDITORIAL COMMENT

HD is caused by M. leprae. While the disease is endemic in the southern U.S., the majority of cases found here are diagnosed in individuals born outside of the U.S., where exposure is thought to have occurred.2 The Federated States of Micronesia has a high prevalence of HD, and immigrants from Oceanic countries have the highest rates of diagnosis in the U.S.2,3

Skin lesions and peripheral nerve damage are hallmarks of HD. The diagnosis can be made clinically, though histopathology is the gold standard.4 Complications of HD include type 1 reversal reactions, which are associated with increased cell-mediated immune response to M. leprae, leading to increased edema and swelling of peripheral nerves and increased erythema of existing skin lesions.4 This patient’s presenting symptoms of hand edema and ulceration (Figure 1) represented a type 1 reversal reaction that led to significant neurologic impairment.

The treatment of HD typically involves dapsone and rifampin, with or without clofazimine, based on the disease classification.5 Minocycline and clarithromycin are bactericidal against M. leprae6 and have been used as alternative treatments when first-line agents cannot be used because of drug intolerance or, as in this case, drug interactions between rifampin and prednisone.4 The treatment of type 1 reversal reaction typically involves corticosteroids, though the overall efficacy and duration of therapy remain uncertain.7,8

The military provides a unique environment for exposure, as soldiers are often deployed into endemic areas. However, reported cases of HD among U.S. military personnel are rare. The first such reported cases occurred in the Spanish-American War (1898) despite prior conflicts in endemic areas.9,10 Among the 323 reported cases of leprosy in veterans between 1920 and 1968, less than 80 were thought to be service related.9 Among those cases not involving infections after receiving tattoos, only 2 cases involved service members whose length of exposure was reported as less than 1 year.9,10 The Vietnam War brought U.S. soldiers into combat in endemic areas of Southeast Asia, but there are even fewer reported cases among veterans of this conflict, with at least 3 service-related cases.11–13 The low number of cases likely reflected decreased exposure time due to shorter deployments and the use of dapsone for malaria prophylaxis.14 Since the start of the current Global War on Terrorism, there have been at least 6 published cases of HD among active duty U.S. military members, the majority of which were not service related.15–18 Five of the 6 published cases involved service members from Micronesia. (Currently, there are 2 other active cases of HD being treated in service members in conjunction with the NHDP.) In a case series of 3 active duty soldiers from Micronesia with HD, the average time to diagnosis was 8 months.15 This observation illustrates that HD’s indolent course of skin lesions and neurologic deficits can lead to a delay in diagnosis.19 Given the potential morbidity associated with delayed diagnosis, providers should consider HD in a patient from an endemic region with rash and neuropathy.

There have been no published reports among U.S. troops of HD secondary to exposure to other infected service members. However, there have been reported cases of family members contracting HD from service members.9 Such examples indicate that prolonged, close exposure to an infected individual or prolonged travel to endemic countries is needed for infection with HD.

Before effective therapies were widely available, a diagnosis of HD resulted in discharge from the U.S. Army.9 However, currently, if the HD responds to treatment and does not lead to physical limitations, affected service members may be retained.20

In summary, HD is rare in the U.S. military and its veterans. However, because of the potential significant morbidity associated with delayed diagnosis and treatment of HD, this condition should be considered in patients presenting with skin lesions and peripheral neuropathy, especially if the patients are from HD-endemic regions.

Author affiliations: Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, TX (MAJ Jansen and Maj Lindholm); National Hansen’s Disease Program, Baton Rouge, LA (Dr. Stryjewska); Uniformed Services University of the Health Sciences, Bethesda, MD (Maj Lindholm); Wilford Hall Ambulatory Surgical Center, Joint Base San Antonio-Lackland, TX (Maj Bandino and Capt Durso)

Disclaimer: The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views or policies of the Uniformed Services University of the Health Sciences, Brooke Army Medical Center, Wilford Hall Ambulatory Surgical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, the Department of the Air Force, the Department of Defense, or the U.S. Government. Mention of trade name, commercial products, or organizations does not imply endorsement by the U.S. Government. The authors are employees of the U.S. Government. This work was prepared as part of their official duties. Title 17 U.S.C. §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

REFERENCES

1. World Health Organization. Global leprosy update, 2016: accelerating reduction of disease burden. Wkly Epidemiol Rec. 2017;92(35):501–519.

2. Nolen L, Haberling D, Scollard D, et al. Incidence of Hansen's disease—United States, 1994–2011. MMWR Morb Mortal Wkly Rep. 2014;63(43):969–972.

3. Woodall P, Scollard D, Rajan L. Hansen disease among Micronesian and Marshallese persons living in the United States. Emerg Infect Dis. 2011;17(7):1202–1208.

4. Britton WJ, Lockwood DN. Leprosy. Lancet. 2004;363(9416):1209–1219.

5. Moschella SL. An update on the diagnosis and treatment of leprosy. J Am Acad Dermatol. 2004;51(3):417–426.

6. Ji B, Jamet P, Perani EG, Bobin P, Grosset JH. Powerful bactericidal activities of clarithromycin and minocycline against Mycobacterium leprae in lepromatous leprosy. J Infect Dis. 1993;168(1):188–190.

7. Van Veen NH, Nicholls PG, Smith WC, Richardus JH. Corticosteroids for treating nerve damage in leprosy. Cochrane Database Syst Rev. 2016;(5):CD005491.

8. Walker SL, Lockwood DN. Leprosy type 1 (reversal) reactions and their management. Lepr Rev. 2008;79(4):372–386.

9. Brubaker ML, Binford CH, Trautman JR. Occurrence of leprosy in U.S. veterans after service in endemic areas abroad. Public Health Rep. 1969;84(12):1051–1058.

10. Aycock WL, Gordon JE. Leprosy in veterans of American wars. Am J Med Sci. 1947;214(3):329–339.

11. Medford FE. Leprosy in Vietnam veterans. Arch Intern Med. 1974;134(2):373.

12. Rose HD. Letter: Leprosy in Vietnam returnees. JAMA.1974;230(10):1388.

13. Kivirand AI, Price PH. Leprosy in Vietnam veteran. Arch Pathol Lab Med. 1979;103(7):367.

14. Enna CD, Trautman JR. Leprosy in the military services. Mil Med. 1969;134(12):1423–1426.

15. Hartzell JD, Zapor M, Peng S, Straight T. Leprosy: a case series and review. South Med J. 2004;97(12):1252–1256.

16. Berjohn CM, DuPlessis CA, Tieu K, Maves RC. Multibacillary leprosy in an active duty military member. Emerg Infect Dis. 2015;21(6):1077–1078.

17. Bossalini JP, Bandino JP, Miletta NR. Delayed diagnosis of leprosy in a Micronesian soldier—case report. Mil Med. 2019;184(9/10):561–564.

18. Wellington T, Schofield C. Late-onset ulnar neuritis following treatment of lepromatous leprosy infection. PLoS Negl Trop Dis. 2019;13(8):e0007684.

19. Chad DA, Hedley-Whyte ET. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 1-2004. A 49-year-old woman with asymmetric painful neuropathy. N Engl J Med. 2004;350(2):166–176.

20. Headquarters, Department of the Army. Army Regulation 40-501. Medical Services. Standards of Medical Fitness. 27 June 2019.

Ulcer along the interspace between the patient’s right index and middle fingers. Photograph courtesy of Brooke Army Medical Center Medical Photography

Multiple, large, irregular, welldemarcated, scaly, erythematous plaques on the left arm. These lesions were noted to have diminished sensation compared to surrounding normal skin. Photograph courtesy of Brooke Army Medical Center Medical Photography.

Multiple, large, well-demarcated, annular, hyperpigmented, scaly plaques with relative central clearing on the left leg. These lesions were noted to have diminished sensation compared to surrounding normal skin. Photograph courtesy of Brooke Army Medical Center Medical Photography.Magnetic resonance imaging of the distal right arm. Coronal short T1 inversion recovery (STIR) image showing diffuse ulnar nerve enlargement (red arrow).Magnetic resonace imaging of the distal right arm. Coronal short T1 inversion recovery (STIR) imaging showing diffuse median nerve enlargement (red arrow).Thickening of the left greater auricular nerve. Photograph courtesy of Brooke Army Medical Center Medical Photography.Photomicrograph of punch biopsy specimen demonstrating superficial and deep dermal, non-caseating, epithelioid cell granulomas (black arrow), some forming preferentially around adnexal structures and nerves (hematoxylin and eosin stain, original magnification x 4).Photomicrograph of punch biopsy specimen demonstrating discrete, non-caseating, epithelioid cell granulomas around adnexal structures (black arrow, eccrine glands) and nerves (red arrow) within the dermis (hematoxylin and eosin stain, original magnification x 10).

You also may be interested in...

Characterizing the Contribution of Chronic Pain Diagnoses to the Neurologic Burden of Disease, Active Component, U.S. Armed Forces, 2009–2018

Article
10/1/2020
Belgian Medical Component 1st Lt. Olivier, a physical therapist, adjusts the neck of a pilot from the 332nd Air Expeditionary Wing, June 22, 2017, in Southwest Asia. Aircrew from the 332nd AEW received treatment for pains associated with flying high performance aircraft through a partnership program with the Belgian Medical Component. (U.S. Air Force photo/Senior Airman Damon Kasberg)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2015–April 2020

Article
10/1/2020
NORFOLK (Oct. 15, 2019) Lt. Sipriano Marte administers an influenza vaccination to Airman Tyler French in the intensive care unit aboard the Wasp-class amphibious assault ship USS Kearsarge (LHD 3). Kearsarge is underway conducting routine training. (U.S. Navy photo by Mass Communication Specialist Petty Officer 3rd Class Jacob Vermeulen/Released)

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2015–April 2020

Recommended Content:

Medical Surveillance Monthly Report

Acute and Chronic Pancreatitis, Active Component, U.S. Armed Forces, 2004–2018

Article
10/1/2020
Istock 916163392 3D illustration of human body organs (pancreas).

Acute and Chronic Pancreatitis, Active Component, U.S. Armed Forces, 2004–2018

Recommended Content:

Medical Surveillance Monthly Report

Update: Surveillance of Spotted Fever Rickettsioses at Army Installations in the U.S. Central and Atlantic Regions, 2012–2018

Article
9/1/2020
This photograph depicts a dorsal view of a female Gulf Coast tick, Amblyomma maculatum. This tick species is a known vector for Rickettsial organisms, Rickettsia parkeri, and Ehrlichia ruminantium, formerly Cowdria ruminantium. R. parkeri is a member of the spotted fever group of rickettsial diseases affecting humans, while E. ruminantium causes heartwater disease, an infectious, noncontagious, tick-borne disease of domestic, and wild ruminants, including cattle, sheep, goats, antelope, and buffalo. Note the considerably smaller scutum, or shield covering only a small region of its dorsal abdomen, unlike its male counterpart, an example of which can be seen in PHIL 10877, and 10878, which sports a scutum covering its entire dorsal abdomen. The smaller scutum in the female enables its abdomen to expand considerably, leading to an engorged appearance after ingesting its host blood meal. (Content provider: CDC/ Dr. Christopher Paddock)

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2015–June 2020

Article
9/1/2020
Spc. Jayson Sanchez of the Army Reserve’s 77th Sustainment Brigade receives a blood draw from phlebotomist Nikole Horrell during the mass medical-readiness event hosted Aug. 8-9, 2015 by the Army Reserve’s 99th Regional Support Command at Joint Base McGuire-Dix-Lakehurst, N.J., in an effort to increase Soldier readiness throughout the northeastern United States. More than 300 Army Reserve and Army National Guard Soldiers had the opportunity to take care of their Periodic Health Assessments, dental exams, vision screenings, HIV blood draws, immunizations, hearing tests, LOD processing and temporary/permanent profiles during the event. (U.S. Army photo by Sgt. Salvatore Ottaviano, 99th Readiness Division)

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Inguinal Hernia and Repair Procedures and Rate of Subsequent Pain Diagnoses, Active Component Service Members, U.S. Armed Forces, 2010–2019

Article
9/1/2020
Senegalese and Vermont National Guard medical care professionals repair a hernia at the Hopital de la Paix in Ziguinchor, Senegal, Feb. 14, 2018. Vermont Guardsmen work alongside Senegalese medical personnel to obtain real-world experience while providing valuable medical services as part of a Medical Readiness Training Exercise. (U.S. Army National Guard photo by Sgt. Avery Cunningham)

Recommended Content:

Medical Surveillance Monthly Report

DHA recognizes 25 years of AFHSB's health surveillance journal

Article
8/12/2020
Medical technicians wearing masks and entering information on a computer

25 Years of Surveillance Reporting in Monthly Journal

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Article
8/1/2020
This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Stephanie Rossow).

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Recommended Content:

Medical Surveillance Monthly Report

Diarrhea and Associated Illness Characteristics and Risk Factors Among British Active Duty Service Members at Askari Storm Training Exercise, Nanyuki, Kenya, January–June 2014

Article
8/1/2020
This illustration was updated in the Centers for Disease Control and Prevention’s (CDC’s) Antibiotic Resistance Threats in the United States, 2019. This illustration depicts a three-dimensional computer-generated image of a cluster of drug-resistant, curly-cue shaped, Campylobacter sp. bacteria. The artistic recreation was based upon scanning electron microscopic imagery (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Alissa Eckert).

Diarrhea and Associated Illness Characteristics and Risk Factors Among British Active Duty Service Members at Askari Storm Training Exercise, Nanyuki, Kenya, January–June 2014

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Acute Gastrointestinal Infections and Diarrhea, Active Component, U.S. Armed Forces, 2010–2019

Article
8/1/2020
This illustration was updated in the Centers for Disease Control and Prevention’s (CDC’s) Antibiotic Resistance Threats in the United States, 2019. This illustration depicts a three-dimensional, computer-generated image of a group of extended-spectrum ß-lactamase-producing Enterobacteriaceae bacteria, in this case, Escherichia coli. The artistic recreation was based upon scanning electron microscopic imagery. This is an excellent visual example of the long, whip-like, peritrichous flagellae, sprouting from what appear to be random points on the organism’s exterior, as well as the numerous shorter, and finer fimbriae, imparting a furry look to the bacteria (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Alissa Eckert).

Update: Incidence of Acute Gastrointestinal Infections and Diarrhea, Active Component, U.S. Armed Forces, 2010–2019

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Norovirus Outbreaks in Military Forces, 2015–2019

Article
8/1/2020
Based on electron microscopic imagery, this three-dimensional illustration provides a graphical representation of a single norovirus virion. Though subtle, the different colors represent different regions of the organism’s outer protein shell, or capsid (Content provider: CDC/Jessica A. Allen; Photo credit: CDC/Alissa Eckert).

Surveillance Snapshot: Norovirus Outbreaks in Military Forces, 2015–2019

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Cervical Cancer Screening Among U.S. Military Service Women in the Millennium Cohort Study, 2003–2015

Article
7/1/2020
Lt. Cmdr. Leslye Green, staff obstetrician and gynecologist, Naval Hospital Pensacola (NHP), uses a model to discuss cervical cancer with a patient at NHP. According to the Centers for Disease Control and Prevention (CDC), cervical cancer is highly preventable because screening tests for cervical cancer and vaccines to protect against human papillomavirus (HPV), which is the main cause of cervical cancer, are readily available. Cervical cancer is highly treatable and associated with long survival and good quality of life when it is detected early. (U.S. Navy photo by Mass Communication Specialist 1st Class Brannon Deugan)

Surveillance Snapshot: Cervical Cancer Screening Among U.S. Military Service Women in the Millennium Cohort Study, 2003–2015

Recommended Content:

Medical Surveillance Monthly Report

Epidemiology of Functional Neurological Disorder, Active Component, U.S. Armed Forces, 2000-2018

Article
7/1/2020
MRI film (iStock.com/temet)

Epidemiology of Functional Neurological Disorder, Active Component, U.S. Armed Forces, 2000-2018

Recommended Content:

Medical Surveillance Monthly Report

Hearing Conservation Measures of Effectiveness Across the Department of Defense

Article
7/1/2020
Kori Reese, an audiology technician at Naval Branch Health Clinic Jacksonville’s occupational health clinic, conducts a hearing exam with Airman Diosney Moraga. Naval Hospital Jacksonville and Navy Medical Readiness and Training Command Jacksonville won the Chief of Naval Operation’s Award for Achievement in Ashore Safety (large non-industrial command) for Fiscal Year 2019. (U.S. Navy photo by Jacob Sippel).

Recommended Content:

Medical Surveillance Monthly Report

Alcohol-Related Emergency Department Visits, Hospitalizations, and Co-Occurring Injuries, Active Component, U.S. Armed Forces, 2009–2018

Article
7/1/2020
Sailors simulate a drunk driving accident during a Keep What You've Earned fair on Naval Base Kitsap Bangor. The fair encourages responsible alcohol use by celebrating the achievements in the sailors' Navy careers and actively engages sailors as advocates for responsible drinking. (U.S. Navy photo by Mass Communication Specialist 3rd Class Chris Brown)

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 12

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.