Skip to main content

Military Health System

Update: Malaria, U.S. Armed Forces, 2019

Recommended Content:

Medical Surveillance Monthly Report

Abstract

Malaria infection remains an important health threat to U.S. service members who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. In 2019, a total of 35 service members were diagnosed with or reported to have malaria. This represents a 40.7% decrease from the 59 cases identified in 2018. The relatively low numbers of cases during 2012–2019 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. Although the number of cases of malaria caused by Plasmodium falciparum decreased in 2019, the percentage of such cases (54.3%) was the highest during any given year of the 2010–2019 surveillance period. Eleven cases of malaria were attributed to an unspecified/other source (31.4%). The number of malaria cases caused by P. vivax (n=5) was one of the lowest observed during the 10-year surveillance period, and the percentage (14.3%) of such cases remained one of the lowest. Malaria was diagnosed at or reported from 17 different medical facilities in the U.S., Germany, Afghanistan, and Korea. Providers of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

What Are the New Findings?

The 2019 total of 35 malaria cases among active and reserve component service members was tied with the 2017 total for the lowest annual counts of cases during the past 10 years. The 2019 proportion of cases (54.3%) due to P. falciparum was the highest of the 10-year period.

What s the Impact on Readiness and Force Health Protection?

The decrease in total counts of malaria cases during the last decade and the increased proportion of cases due to P. falciparum both reflect the reduced numbers of service members exposed to malaria (especially P. vivax) in Afghanistan. The persistent threat fromP. falciparum associated with duty in Africa underscores the importance of preventive measures effective against this most dangerous strain of malaria.

Background

Globally, the incidence rate of malaria is estimated to have decreased by 19.7% between 2010 and 2018, from 71 to 57 cases per 1,000 population at risk between 2010 and 2018.1 However, for the third consecutive year, the World Health Organization reported a relative plateauing in the numbers of cases and rates of malaria: in 2018, there were an estimated 228 million cases of malaria compared to 231 million in 2017 and 227 million in 2016; the incidence rate had decreased to 57 per 1,000 population at risk in 2014 but remained steady through 2018.1During the 6 years prior, the number of people contracting malaria globally had been steadily decreasing, from 251 million in 2010 to 219 million in 2015.1

Countries in Africa accounted for around 93% of worldwide malaria cases and 94% of all malaria-related deaths in 2018.The majority of these cases and deaths were due to mosquito-transmitted Plasmodium falciparum and occurred in sub-Saharan Africa among children under 5 years of age, but P. vivaxP. ovale, and P. malariae can also cause severe disease.1,2Globally, 3.3% of estimated malaria cases are due to P. vivax; however, 85% of vivax malaria cases occurred in 6 countries including India, Afghanistan, Pakistan, Ethiopia, Papua New Guinea, and Indonesia.1

The MSMR has published annual updates on the incidence of malaria among U.S. service members since 2001 (the first 6 updates were limited to Army members).3The MSMR focus on malaria reflects both historical lessons learned about this mosquito-borne disease and the continuing threat that it poses to military operations and service members' health. Malaria infected many thousands of service members during World War II (approximately 695,000 cases), the Korean War (approximately 390,000 cases), and the conflict in Vietnam (approximately 50,000 cases).4,5More recent military engagements in Africa, Asia, Southwest Asia, the Caribbean, and the Middle East have necessitated heightened vigilance, preventive measures, and treatment of cases.6–15

In the planning for overseas military operations, the geography-based presence or absence of the malaria threat is usually known and can be anticipated. However, when preventive countermeasures are needed, their effective implementation is multifaceted and depends on the provision of protective equipment and supplies, individuals' understanding of the threat and attention to personal protective measures, treatment of malaria cases, and medical surveillance. The U.S. Armed Forces have long had policies and prescribed countermeasures effective against vector-borne diseases such as malaria, including chemoprophylactic drugs, permethrin-impregnated uniforms and bed nets, and topical insect repellents containing N,N-diethyl-meta-toluamide (DEET). When cases and outbreaks of malaria have occurred, they generally have been due to poor adherence to chemoprophylaxis and other personal preventive measures.7–10 MSMR malaria updates from the past 7 years documented that the annual case counts among service members after 2011 were the lowest in more than a decade.16In particular, these updates showed that the numbers of cases associated with service in Afghanistan had decreased substantially in the past 7 years, presumably because of the dramatic reduction in the numbers of service members assigned there.17 This update for 2019 uses methods similar to those employed in previous analyses to describe the epidemiologic patterns of malaria incidence among service members in the active and reserve components of the U.S. Armed Forces.

Methods

The surveillance period was 1 Jan. 2010 through 31 Dec. 2019. The surveillance population included Army, Navy, Air Force, and Marine Corps active and reserve component members of the U.S. Armed Forces. The records of the Defense Medical Surveillance System (DMSS) were searched to identify reportable medical events and hospitalizations (in military and non-military facilities) that included diagnoses of malaria. A case of malaria was defined as an individual with 1) a reportable medical event record of confirmed malaria; 2) a hospitalization record with a primary diagnosis of malaria; 3) a hospitalization record with a nonprimary diagnosis of malaria due to a specific Plasmodium species; 4) a hospitalization record with a nonprimary diagnosis of malaria plus a diagnosis of anemia, thrombocytopenia and related conditions, or malaria complicating pregnancy in any diagnostic position; 5) a hospitalization record with a nonprimary diagnosis of malaria plus diagnoses of signs or symptoms consistent with malaria (as listed in the Control of Communicable Diseases Manual, 18th edition18) in each diagnostic position antecedent to malaria; or 6) a positive malaria antigen test plus an outpatient record with a diagnosis of malaria in any diagnostic position within 30 days of the specimen collection date. The relevant International Classification of Diseases, 9th and 10th Revision (ICD-9 and ICD-10, respectively) codes are shown in Table 1. Laboratory data for malaria were provided by the Navy and Marine Corps Public Health Center.

This analysis allowed 1 episode of malaria per service member per 365-day period. When multiple records documented a single episode, the date of the earliest encounter was considered the date of clinical onset and the most specific diagnosis recorded within 30 days of the incident diagnosis was used to classify the Plasmodium species.

Presumed locations of malaria acquisition were estimated using a hierarchical algorithm: 1) cases diagnosed in a malarious country were considered acquired in that country, 2) reportable medical events that listed exposures to malaria endemic locations were considered acquired in those locations, 3) reportable medical events that did not list exposures to malaria endemic locations but were reported from installations in malaria endemic locations were considered acquired in those locations, 4) cases diagnosed among service members during or within 30 days of deployment or assignment to a malarious country were considered acquired in that country, and 5) cases diagnosed among service members who had been deployed or assigned to a malarious country within 2 years before diagnosis were considered acquired in those respective countries. All remaining cases were considered acquired in unknown locations.

Results

In 2019, a total of 35 service members were diagnosed with or reported to have malaria (Table 2). That total was one of the lowest number of cases in any given year during the surveillance period and represents a 40.7% decrease from the 59 cases identified in 2018 (Figure 1). The percentage of 2019 cases of malaria caused by P. falciparum (54.3%) was the highest during any given year of the surveillance period. The highest previous annual percentage of P. falciparum was 46.8% in 2014. Of the 16 cases in 2019 not attributed to P. falciparum, 5 (14.3%) were identified as due to P. vivax and 11 (31.4%) were labeled as associated with other/unspecified types of malaria. The number of malaria cases caused by P. vivaxin 2019 was one of the lowest observed during the 10-year surveillance period; the percentage of such cases remained one of the lowest. There was 1 case identified as having been caused by either P. malariae or P. ovale in 2019 (Figure 1).

Similar to 2018, the majority of U.S. military members diagnosed with malaria in 2019 were male (94.3%), active component members (85.7%), in the Army (82.9%), and in their 20s (54.3%) (Table 2).

Of the 35 malaria cases in 2019, slightly less than two-fifths of the infections were considered to have been acquired in Africa (37.1%; n=13); about one-third (31.4%; n=11) were attributed to Afghanistan; and about one-fourth (25.7%; n=9) could not be associated with a known, specific location. The remaining cases were attributed to Korea (5.7%; n=2); no cases were considered to have been acquired in South/Central America (Figure 2). Of the 13 malaria infections considered acquired in Africa in 2019, 4 were linked to Cameroon; 3 to Togo; 2 to Kenya; and 1 each to Djibouti, Liberia, Niger, and Nigeria (data not shown).

During 2019, malaria cases were diagnosed or reported from 17 different medical facilities in the U.S., Germany, Afghanistan, and Korea(Table 3). Almost one-third (31.4%; 11/35) of the total cases with a known location of diagnosis were reported from or diagnosed outside the U.S., which represents a slight increase from the 25.4% of malaria cases in this category in 2018. The largest number of malaria cases associated with a single medical facility during 2019 was 8 at the Evans Army Community Hospital in Fort Carson, CO.

In 2019, the percentage of malaria cases that were acquired in Africa (37.4%; n=13) increased from 2018 (25.4%) but was similar to the percentages in 2016 and 2017 (Figure 2). The percentage of Afghanistan-acquired cases (31.4%; n=11) in 2019 was similar to the percentage in 2018, which was the highest that it had been since 2013. The percentage of malaria cases acquired in Korea (5.7%; n=2) in 2019 was the lowest it had been since 2013 (Figure 2).

Between 2010 and 2019, the majority of malaria cases were diagnosed or reported during the 6 months from the middle of spring through the middle of autumn in the Northern Hemisphere (Figure 3). In 2019, 77.1% (27/35) of malaria cases among U.S. service members were diagnosed during May–Oct. (data not shown). This proportion is similar to the 72.0% (432/600) of cases diagnosed during the same 6-month intervals over the entire 10-year surveillance period. During 2010–2019, the proportions of malaria cases diagnosed or reported during May–Oct. varied by region of acquisition: Korea (91.9%; 57/62); Afghanistan (81.0%; 201/248); Africa (59.8%; 104/174); and South/Central America (50.0%; 3/6)(data not shown).

Editorial Comment

MSMR annual reports on malaria incidence among all U.S. services began in 2007. The current report documents that the number of cases during 2019 decreased from 2018 and was one of the lowest of any of the previous years in the 2010–2019 surveillance period. The same number of malaria cases (n=35) was reported in 2017. Most of the marked decline in the past 8 years is attributable to the decrease in numbers of malaria cases associated with service in Afghanistan. The dominant factor in that trend has undoubtedly been the progressive withdrawal of U.S. forces from that country.

This report also documents the fluctuating incidence of acquisition of malaria in Africa and Korea among U.S. military members during the past decade. Although the predominant species of malaria in Korea and Afghanistan has been P. vivax, the more dangerousP. falciparums pecies is of primary concern in Africa. This report documents that the 2019 percentage of cases caused by P. falciparum was the highest of any year of the surveillance period. The planning and execution of military operations on that continent must incorporate actions to counter the threat of infection by that potentially deadly parasite wherever it is endemic. The 2014–2015 employment of U.S. service members to aid in the response to the Ebola virus outbreak in West Africa is an example of an operation where the risk of P. falciparum malaria was significant.15,19 The finding thatP. falciparum malaria was diagnosed in more than one-half of the cases in 2019 further underscores the need for continued emphasis on prevention of this disease, given its potential severity and risk of death. Moreover, a recent article noted the possibility of false negative results for P. falciparum on the rapid diagnostic tests favored by units in resource limited or austere locations.20 Although more research is needed, commanders and unit leaders may need to be especially vigilant with forces that are far forward.

The observations about the seasonality of diagnoses of malaria are compatible with the presumption that the risk of acquiring and developing symptoms of malaria in a temperate climatic zone of the Northern Hemisphere would be greatest during May–Oc. Given the typical incubation periods of malaria infection (approximately 9–14 days for P. falciparum, 12–18 days for P. vivax and P. ovale, and 18–40 days for P. malariae)18 and the seasonal disappearance of biting mosquitoes during the winter, most malaria acquired in Korea and Afghanistan would be expected to cause symptoms during the warmer months of the year. However, it should be noted that studies of P. vivax malaria in Korea have found that the time between primary infection and clinical illness among different P. vivax strains ranges between 8 days and 8–13 months and that as many as 40–50% of infected individuals may not manifest the symptoms of their primary illness until 6–11 months after infection.21,22 Klein and colleagues recently reported a cluster of 11 U.S. soldiers with P. vivax malaria who were likely infected at a training area located near the southern border of the demilitarized zone in 2015.23 Nine of the malaria cases developed their first symptoms of infection 9 or more months after exposure and after their departure from Korea.23 Transmission of malaria in tropical regions such as sub-Saharan Africa is less subject to the limitations of the seasons as in temperate climates but depends more on other factors affecting mosquito breeding, such as the timing of the rainy season and altitude (below 2,000 meters).24

There are significant limitations to this report that should be considered when interpreting the findings. For example, the ascertainment of malaria cases is likely incomplete; some cases treated in deployed or non-U.S. military medical facilities may not have been reported or otherwise ascertained at the time of this analysis. Furthermore, it should be noted that the medical records of the DMSS do not contain medical data from military treatment facilities that are using the new electronic health records of MHS GENESIS, which was implemented at different sites throughout 2017. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, the medical encounter data for individuals seeking care at any of these facilities were not captured in this analysis.

Diagnoses of malaria that were documented only in outpatient settings without records of a positive malaria antigen test and that were not reported as notifiable events were not included as cases. Also, the locations of infection acquisitions were estimated from reported relevant information. Some cases had reported exposures in multiple malarious areas, and others had no relevant exposure information. Personal travel to or military activities in malaria-endemic countries were not accounted for unless specified in notifiable event reports.

As in prior years, in 2019 most malaria cases among U.S. military members were treated at medical facilities remote from malaria endemic areas. Providers of acute medical care to service members (in both garrison and deployed settings) should be knowledgeable of and vigilant for the early clinical manifestations of malaria among service members who are or were recently in malaria-endemic areas. Care providers should also be capable of diagnosing malaria (or have access to a clinical laboratory that is proficient in malaria diagnosis) and initiating treatment (particularly when P. falciparum malaria is clinically suspected).

Continued emphasis on adherence to standard malaria prevention protocols is warranted for all military members at risk of malaria. Personal protective measures against malaria include the proper wear of permethrin-treated uniforms and the use of permethrin-treated bed nets; the topical use of military-issued, DEET-containing insect repellent; and compliance with prescribed chemoprophylactic drugs before, during, and after times of exposure in malarious areas. Current Department of Defense guidance about medications for prophylaxis of malaria summarizes the roles of chloroquine, atovaquone-proguanil, doxycycline, mefloquine, primaquine, and tafenoquine.25,26

Acknowledgments: The authors thank the Navy and Marine Corps Public Health Center, Portsmouth, VA, for providing laboratory data for this analysis.

References

  1. World Health Organization. World Malaria Report 2019. WHO, Geneva 2019. https://www.who.int/publications/m/item/WHO-HTM-GMP-2019.15. Accessed 17 Jan. 2019.
  2. Mace KE, Arguin PM, Lucci NW, Tan KR. Malaria Surveillance—United States, 2016. MMWR Surveill Summ. 2019;68(5):1–35.
  3. U.S. Army Center for Health Promotion and Preventive Medicine. Malaria, U.S. Army, 1998. MSMR. 1999;5(1):2–3.
  4. Gupta RK, Gambel JM, Schiefer BA. Personal protection measures against arthropods. In: Kelley PW, ed. Military Preventive Medicine: Mobilization and Deployment, Volume 1. Falls Church, VA: Office of the Surgeon General, Department of the Army; 2003:503–521.
  5. Ognibene AJ, Barrett O. Malaria: introduction and background. In: Ognibene AJ, Barrett O, eds. Internal Medicine in Vietnam Vol II: General Medicine and Infectious Diseases. Washington, DC: Office of the Surgeon General, Center of Military History; 1982:271–278.
  6. Shanks GD, Karwacki JJ. Malaria as a military factor in Southeast Asia. Mil Med. 1991;156(12):684–668.
  7. Kotwal RS, Wenzel RB, Sterling RA, et al. An outbreak of malaria in U.S. Army Rangers returning from Afghanistan. JAMA. 2005;293(2):212–216.
  8. Whitman TJ, Coyne PE, Magill AJ, et al. An outbreak of Plasmodium falciparum malaria in U.S. Marines deployed to Liberia. Am J Trop Med Hyg. 2010;83(2):258–265.
  9. Centers for Disease Control and Prevention. Malaria acquired in Haiti–2010. MMWR. 2010;59(8):217–218.
  10. Shaha DP, Pacha LA, Garges EC, Scoville SL, Mancuso JD. Confirmed malaria cases among active component U.S. Army personnel, Jan.–Sept. 2012. MSMR. 2013;20(1):6–9.
  11. Lee JS, Lee WJ, Cho SH, Ree H. Outbreak of vivax malaria in areas adjacent to the demilitarized zone, South Korea, 1998. Am J Trop Med Hyg. 2002;66(1):13–17.
  12. Armed Forces Health Surveillance Center (Provisional). Korea-acquired malaria, U.S. Armed Forces, Jan. 1998–Oct.2007. MSMR. 2007;14(8):2–5.
  13. Ciminera P, Brundage J. Malaria in U.S. military forces: a description of deployment exposures from 2003 through 2005. Am J Trop Med Hyg. 2007;76(2):275–279.
  14. Armed Forces Health Surveillance Center. Malaria among deployers to Haiti, U.S. Armed Forces, 13 Jan.–30 June 2010. MSMR. 2010;17(8):11.
  15. Woods M. Biggest threat to U.S. troops in Liberia is malaria, not Ebola. https://www.army.mil/article/139340/biggest_threat_to_us_troops_in_liberia_is_malaria_not_ebola. Published 4 Dec. 2014. Accessed 17 Jan. 2020.
  16. Armed Forces Health Surveillance Center. Update: Malaria, U.S. Armed Forces, 2012. MSMR. 2013;20(1):2–5.
  17. Armed Forces Health Surveillance Branch. Update: Malaria, U.S. Armed Forces, 2018. MSMR. 2019;26(2):2–7.
  18. Heymann DL, ed. Control of Communicable Diseases Manual. 18th ed. Washington, DC: American Public Health Association; 2004.
  19. Mace KE, Arguin PM, Tan KR. Malaria Surveillance—United States, 2015. MMWR Surveill Summ. 2018;67(7):1–28.
  20. Forshey BM, Morton L, Martin N, et al. Plasmodium falciparum rapid test failures threaten diagnosis and treatment of U.S. military personnel. Mil Med. 2020;185(1–2):e1–e4.
  21. White, NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297.
  22. Distelhorst JT, Marcum RE, Klein TA, Kim HC, Lee WJ. Report of two cases of vivax malaria in U.S. soldiers and a review of malaria in the Republic of Korea. MSMR. 2014;21(1):8–14.
  23. Klein TA, Seyoum B, Forshey BM, et al. Cluster of vivax malaria in U.S. soldiers training near the demilitarized zone, Republic of Korea during 2015. MSMR. 2018;25(11):4–9.
  24. Fairhurst RM, Wellems TE. Plasmodium species (malaria). In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett' Principles and Practice of Infectious Diseases. 7th ed. Philadelphia, PA: Churchill Livingstone Elsevier; 2010.
  25. Assistant Secretary of Defense for Health Affairs. Guidance on Medications for Prophylaxis of Malaria. HA-Policy 13-002. 15 April 2013. 
  26. Defense Health Agency. Procedural Instruction 6490.03. Deployment Health Procedures. 17 Dec. 2019.

      Numbers of malaria cases, by Plasmodium species and calendar year of diagnosis or report, active and reserve components, U.S. Armed Forces, 2010–2019 

      Annual numbers of malaria cases, by location of acquisition, U.S. Armed Forces, 2010–2019

      Cumulative numbers of diagnoses and reported cases of malaria, by month of clinical presentation or diagnosis, U.S. Armed Forces, January 2010–December 2019

      Malaria cases by Plasmodium species and selected demographic characteristics, U.S. Armed Forces, 2019

       Number of malaria cases, by geographical locations of diagnosis or report and presumed location of acquisition, active and reserve components, U.S. Armed Forces, 2019

       

You also may be interested in...

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 Aug.–11 Sept. 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing's syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness & Combat Support

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report
<< < ... 11 12 13 > >> 
Showing results 181 - 194 Page 13 of 13
Refine your search
Last Updated: October 20, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery