Back to Top Skip to main content

Images in Health Surveillance: Skin Rashes in Children due to Infectious Causes

A maculopapular rash, a hallmark symptom of measles, on an infant’s face. Credit: CDC/Jim Goodson, M.P.H. A maculopapular rash, a hallmark symptom of measles, on an infant’s face. Credit: CDC/Jim Goodson, M.P.H.

Recommended Content:

Medical Surveillance Monthly Report

BACKGROUND

In this issue of the MSMR, an overview of the incidence of scarlet fever in Military Health System beneficiaries under 17 years of age is presented.1 The following provides a brief comparison of the characteristics of scarlet fever to other erythematous rashes associated with infectious diseases.

Scarlet fever

Scarlet fever (Figure 1) is caused by group A beta-hemolytic streptococcus bacteria.2 The incubation period is generally 2–5 days with prodromal symptoms of fever, sore throat, abdominal pain, and vomiting for 12–48 hours. The rash typically starts on the face or neck and rapidly spreads to the whole body, including the hands and feet, and is characterized as red, maculopapular, rough lesions commonly referred to as a sandpaper rash. Areas of skin folding—such as the groin, armpits, elbows, and knees—will typically develop a darker redness than other areas with the rash. The duration of the rash is variable from a few days to about 1 week and may be followed by desquamation or peeling of the skin for 1–3 weeks. Associated clinical findings include tonsillitis with cervical lymphadenopathy and a strawberry tongue.2,3

Measles

The rubeola virus is the etiologic agent for this infection (Figure 2). After an incubation period of 8–12 days, prodromal symptoms of fever, cough, coryza, and conjunctivitis begin.4 The rash appears 3–4 days after prodromal symptoms and begins around the ears and hairline on the face and spreads downward, covering the face, trunk, and arms by the second day. Initially the rash is red and maculopapular and becomes confluent by day 3. The rash typically lasts about 5 days and then fades in the same sequence as it appeared. Desquamation or peeling of the skin can follow the rash but does not occur on the palms or soles. The rash is not pruritic. Associated clinical findings include prodromal signs and Koplik spots (Figure 3) in the oral mucosa (white pinpoint-sized lesions with a reddened base).2,4,5

Varicella (chickenpox)

This disease (Figure 4) is caused by the initial infection with varicella-zoster virus. The incubation period is 14–16 days with a prodromal period of 0–2 days including fever, headache, malaise, abdominal pain, and decreased appetite. The rash may start on the chest, back, and face and then spreads over the whole body and is characterized by progression from vesicles in a teardrop shape that then crust and scab over. Patients typically have different stages of the rash on the body when examined. Usually within 24–48 hours, the vesicles progress to the crusting stage. All lesions progress to crusting by 5–10 days. The rash is very itchy. Associated clinical findings include high fever and lymphadenopathy.

Rubella (German measles)

Rubella (Figure 5) is caused by the rubella virus and has an incubation period of 16–18 days with a prodromal period of 1–5 days before rash development, which consists of low-grade fever (less than 101°F), headache, conjunctivitis, malaise, lymphadenopathy, cough, and rhinorrhea.6 The rash typically starts on the face and spreads to the extremities over the next 48 hours and appears as small, fine, maculopapular, pink lesions that tend not to coalesce as the measles rash does. Associated clinical findings include distinctive lymphadenopathy including posterior cervical, suboccipital, and posterior auricular nodes.2,5

Erythema infectiosum

This illness (Figure 6) is caused by human parvovirus B19. The incubation period is 1–2 weeks, and a prodromal period lasts 2–5 days before the rash appears and consists of low-grade fever, coryza, headache, malaise, nausea, and diarrhea.7 The first stage of the rash usually begins on the cheeks as a solid brightred eruption with circumoral pallor, giving it a “slapped cheek” appearance. Over the next 1–4 days, the second stage of the rash develops, which is characterized by a maculopapular rash spreading to the trunk and extremities. If central clearing of the rash occurs, it will have a lacelike, reticular pattern. The rash is pruritic and typically fades over 1–3 weeks. Associated clinical conditions include arthropathy; transient aplastic crisis; chronic red cell aplasia; hydrops fetalis; and papular, pruritic eruptions on the hands and feet (“gloves and socks” syndrome).2,5

Roseola (exanthema subitum)

Human herpesvirus 6 (HHV-6) is the most common cause of this illness (Figure 7), but other viral causes include HHV-7, enteroviruses, adenoviruses, and parainfluenza type 1. The incubation period is 5–15 days, and a prodromal period consists of high fevers (104–105°F) for 3–4 days.8 Febrile convulsions may occur in young children. The rash appears as the fever resolves and begins on the chest and abdomen and spreads to the face and extremities and appears as small, separate, rose-pink, blanching, macular or maculopapular lesions. The rash typically resolves after 1–2 days without desquamation. The rash is not itchy. In addition to high fever, occipital adenopathy is a clinical finding along with the rash.2,5

Author affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (Maj Sayers); Defense Health Agency, Armed Forces Health Surveillance Branch (Dr. Clark).

Disclaimer: The contents described in this publication are those of the authors and do not necessarily reflect official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense, or Departments of the Army, Navy, or Air Force.

REFERENCES

1. Sayers DR, Bova ML, Clark LC. Brief report: Diagnoses of scarlet fever in Military Health System (MHS) beneficiaries under 17 years of age across the MHS and in England, 2013–2018. MSMR. 2020;27(2):26–27.

2. Allmon A, Deane K, Martin KL. Common skin rashes in children. Am Fam Physician. 2015;92(3):211–216.

3. Basetti S, Hodgson J, Rawson TM, Majeed A. Scarlet fever: a guide for general practitioners. London J Prim Care (Abingdon). 2017;9(5):77–79.

4. Committee on Infectious Diseases, American Academy of Pediatrics. Measles. In: Red Book: 2018–2021 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018:537–550.

5. Garcia JJG. Differential diagnosis of viral exanthemas. Open Vaccine J. 2010;3:65–68.

6. Committee on Infectious Diseases, American Academy of Pediatrics. Rubella. In: Red Book: 2018–2021 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018;869–883.

7. Committee on Infectious Diseases, American Academy of Pediatrics. Parvovirus B19 (Erythema Infectiosum, Fifth Disease). In: Red Book: 2018 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018:602–606.

8. Committee on Infectious Diseases, American Academy of Pediatrics. Human herpesvirus 6 (including roseola) and 7. In: Red Book: 2018–2021 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018:454–457.

Scarlet fever

Measles
Measles (Koplik spots)
Varicella (chickenpox)
Rubella (German measles)
Erythema infectiosum
Roseola (exanthema subitum)

You also may be interested in...

DHA recognizes 25 years of AFHSB's health surveillance journal

Article
8/12/2020
Medical technicians wearing masks and entering information on a computer

25 Years of Surveillance Reporting in Monthly Journal

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Article
8/1/2020
This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Stephanie Rossow).

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Acute Gastrointestinal Infections and Diarrhea, Active Component, U.S. Armed Forces, 2010–2019

Article
8/1/2020
This illustration was updated in the Centers for Disease Control and Prevention’s (CDC’s) Antibiotic Resistance Threats in the United States, 2019. This illustration depicts a three-dimensional, computer-generated image of a group of extended-spectrum ß-lactamase-producing Enterobacteriaceae bacteria, in this case, Escherichia coli. The artistic recreation was based upon scanning electron microscopic imagery. This is an excellent visual example of the long, whip-like, peritrichous flagellae, sprouting from what appear to be random points on the organism’s exterior, as well as the numerous shorter, and finer fimbriae, imparting a furry look to the bacteria (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Alissa Eckert).

Update: Incidence of Acute Gastrointestinal Infections and Diarrhea, Active Component, U.S. Armed Forces, 2010–2019

Recommended Content:

Medical Surveillance Monthly Report

Diarrhea and Associated Illness Characteristics and Risk Factors Among British Active Duty Service Members at Askari Storm Training Exercise, Nanyuki, Kenya, January–June 2014

Article
8/1/2020
This illustration was updated in the Centers for Disease Control and Prevention’s (CDC’s) Antibiotic Resistance Threats in the United States, 2019. This illustration depicts a three-dimensional computer-generated image of a cluster of drug-resistant, curly-cue shaped, Campylobacter sp. bacteria. The artistic recreation was based upon scanning electron microscopic imagery (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Alissa Eckert).

Diarrhea and Associated Illness Characteristics and Risk Factors Among British Active Duty Service Members at Askari Storm Training Exercise, Nanyuki, Kenya, January–June 2014

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Norovirus Outbreaks in Military Forces, 2015–2019

Article
8/1/2020
Based on electron microscopic imagery, this three-dimensional illustration provides a graphical representation of a single norovirus virion. Though subtle, the different colors represent different regions of the organism’s outer protein shell, or capsid (Content provider: CDC/Jessica A. Allen; Photo credit: CDC/Alissa Eckert).

Surveillance Snapshot: Norovirus Outbreaks in Military Forces, 2015–2019

Recommended Content:

Medical Surveillance Monthly Report

Epidemiology of Functional Neurological Disorder, Active Component, U.S. Armed Forces, 2000-2018

Article
7/1/2020
MRI film (iStock.com/temet)

Epidemiology of Functional Neurological Disorder, Active Component, U.S. Armed Forces, 2000-2018

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Cervical Cancer Screening Among U.S. Military Service Women in the Millennium Cohort Study, 2003–2015

Article
7/1/2020
Lt. Cmdr. Leslye Green, staff obstetrician and gynecologist, Naval Hospital Pensacola (NHP), uses a model to discuss cervical cancer with a patient at NHP. According to the Centers for Disease Control and Prevention (CDC), cervical cancer is highly preventable because screening tests for cervical cancer and vaccines to protect against human papillomavirus (HPV), which is the main cause of cervical cancer, are readily available. Cervical cancer is highly treatable and associated with long survival and good quality of life when it is detected early. (U.S. Navy photo by Mass Communication Specialist 1st Class Brannon Deugan)

Surveillance Snapshot: Cervical Cancer Screening Among U.S. Military Service Women in the Millennium Cohort Study, 2003–2015

Recommended Content:

Medical Surveillance Monthly Report

Hearing Conservation Measures of Effectiveness Across the Department of Defense

Article
7/1/2020
Kori Reese, an audiology technician at Naval Branch Health Clinic Jacksonville’s occupational health clinic, conducts a hearing exam with Airman Diosney Moraga. Naval Hospital Jacksonville and Navy Medical Readiness and Training Command Jacksonville won the Chief of Naval Operation’s Award for Achievement in Ashore Safety (large non-industrial command) for Fiscal Year 2019. (U.S. Navy photo by Jacob Sippel).

Recommended Content:

Medical Surveillance Monthly Report

Alcohol-Related Emergency Department Visits, Hospitalizations, and Co-Occurring Injuries, Active Component, U.S. Armed Forces, 2009–2018

Article
7/1/2020
Sailors simulate a drunk driving accident during a Keep What You've Earned fair on Naval Base Kitsap Bangor. The fair encourages responsible alcohol use by celebrating the achievements in the sailors' Navy careers and actively engages sailors as advocates for responsible drinking. (U.S. Navy photo by Mass Communication Specialist 3rd Class Chris Brown)

Recommended Content:

Medical Surveillance Monthly Report

Animal-Related Injuries in Veterinary Services Personnel, U.S. Army, 2001–2018

Article
6/1/2020
Robin Jones (right), a retired Soldier and current veterinarian who works at the Fort Stewart Veterinary Treatment Facility, is being assisted by Spc. Krystall Shaw, an animal care specialist assigned to the clinic, as Jones uses a stethoscope on a patient to listen for proper breathing at the Fort Stewart Veterinary Treatment Facility on Fort Stewart, Georgia, April 10, 2020. The staff at the clinic continues to provide aid to working and privately owned animals during the COVID-19 pandemic. (U.S. Army photo by Sgt. Zoe Garbarino)

Recommended Content:

Medical Surveillance Monthly Report

Summary of the 2018–2019 Influenza Season Among Department of Defense Service Members and Other Beneficiaries

Article
6/1/2020
A flu shot vaccination sits on a table at 184th Sustainment Command headquarters in Monticello, Mississippi on Feb. 8, 2020. The single best way to prevent seasonal flu is to get vaccinated each year, but good wellness habits like covering your cough and washing your hands often can help prevent the spread of germs. (Mississippi Army National Guard photo by Staff Sgt. Veronica McNabb)

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Direct Care Cost of Heat Illness to the Army, 2016–2018

Article
6/1/2020
Thermometer (Photo credit: U.S. Army)

Brief Report: Direct Care Cost of Heat Illness to the Army, 2016–2018

Recommended Content:

Medical Surveillance Monthly Report

Letter to the Editor: G6PD Deficiency in the Tafenoquine Era

Article
6/1/2020
CDC/James Gathany This image shows a female Anopheles funestus mosquito that had landed on a human skin surface and was in the process of obtaining its blood meal. A. funestus is a known vector for the parasitic disease malaria.

Letter to the Editor: G6PD Deficiency in the Tafenoquine Era

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2019

Article
5/1/2020
A Marine Corps Staff Sgt inspects a platoon. (U.S. Marine Corps Lance Cpl. Zachary Beatty)

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2019

Article
5/1/2020
A physician examines and educates a patient. (U.S. Navy photo by Jacob Sippel, Naval Hospital Jacksonville/Released)

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 11

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.