Back to Top Skip to main content Skip to sub-navigation

Update: Heat Illness, Active Component, U.S. Armed Forces, 2020

Fort Jackson, SC. A trainee with 2nd Battalion, 60th Infantry Regiment puts his arms in an arm immersion cooling tank during training. The tanks allow Soldiers to rapidly cool by putting their forearms into a tank of ice water. (Photo by Saskia Gabriel) Fort Jackson, SC. A trainee with 2nd Battalion, 60th Infantry Regiment puts his arms in an arm immersion cooling tank during training. The tanks allow Soldiers to rapidly cool by putting their forearms into a tank of ice water. (Photo by Saskia Gabriel)

Recommended Content:

Medical Surveillance Monthly Report

WHAT ARE THE NEW FINDINGS?

During 2016–2020, annual rates of both heat stroke and heat exhaustion among active component service members peaked in 2018 but were the lowest in 2020. The annual numbers of heat illnesses diagnosed in Iraq and Afghanistan have trended downward since 2016.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

This analysis demonstrates again the magnitude of risks of heat illnesses among active component service members and the enhanced risks associated with sex age, location of assignment, and occupational categories. Recognition of these risk factors should inform the preventive measures that military leaders, trainers, and service members routinely employ.

ABSTRACT

In 2020, there were 475 incident cases of heat stroke and 1,667 incident cases of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion were 0.36 cases and 1.26 cases per 1,000 person-years; both were the lowest annual rates in the 2016-2020 surveillance period. In 2020, subgroup-specific rates of both incident heat stroke and heat exhaustion were highest among males, those less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. During 2016–2020, a total of 341 heat illnesses were documented among service members in Iraq and Afghanistan; 7.0% (n=24) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

BACKGROUND

Heat illness refers to a group of disorders that occur when the elevation of core body temperature surpasses the compensatory limits of thermoregulation.1 Heat illness is the result of environmental heat stress and/or exertion and represents a set of conditions that exist along a continuum from less severe (heat exhaustion) to potentially life threatening (heat stroke).

Heat exhaustion is caused by the inability to maintain adequate cardiac output because of strenuous physical exertion and environmental heat stress.1,2 Acute dehydration often accompanies heat exhaustion but is not required for the diagnosis.3 The clinical criteria for heat exhaustion include a core body temperature greater than 100.5 ºF/38 ºC and less than 104 ºF/40 ºC at the time of or immediately after exertion and/or heat exposure, physical collapse at the time of or shortly after physical exertion, and no significant dysfunction of the central nervous system. If any central nervous system dysfunction develops (e.g., dizziness or headache), it is mild and rapidly resolves with rest and cooling measures (e.g., removal of unnecessary clothing, relocation to a cooled environment, and oral hydration with cooled, slightly hypotonic solutions).1–4 

Heat stroke is a debilitating illness characterized clinically by severe hyperthermia (i.e., a core body temperature of 104 ºF/40 ºC or greater), profound central nervous system dysfunction (e.g., delirium, seizures, or coma), and additional organ and tissue damage.1,4,5 The onset of heat stroke should prompt aggressive clinical treatments, including rapid cooling and supportive therapies such as fluid resuscitation to stabilize organ function.1,5 The observed pathologic changes in several organ systems are thought to occur through a complex interaction between heat cytotoxicity, coagulopathies, and a severe systemic inflammatory response.1,5 Multiorgan system failure is the ultimate cause of mortality due to heat stroke.5

Timely medical intervention can prevent milder cases of heat illness (e.g., heat exhaustion) from becoming severe (e.g., heat stroke) and potentially life threatening. However, even with medical intervention, heat stroke may have lasting effects, including damage to the nervous system and other vital organs and decreased heat tolerance, making an individual more susceptible to subsequent episodes of heat illness.6–8 Furthermore, the continued manifestation of multiorgan system dysfunction after heat stroke increases patients’ risk of mortality during the ensuing months and years.9,10

Strenuous physical activity for extended durations in occupational settings as well as during military operational and training exercises exposes service members to considerable heat stress because of high environmental heat and/or a high rate of metabolic heat production.11,12 In some military settings, wearing needed protective clothing or equipment may make it biophysically difficult to dissipate body heat.13,14 The resulting body heat burden and associated cardiovascular strain reduce exercise performance and increase the risk of heat-related illness.11,15

Over many decades, lessons learned during military training and operations in hot environments as well as a substantial body of research findings have resulted in doctrine, equipment, and preventive measures that can significantly reduce the adverse health effects of military activities in hot weather.16–22 Although numerous effective countermeasures are available, heat-related illness remains a significant threat to the health and operational effectiveness of military members and their units and accounts for considerable morbidity, particularly during recruit training in the U.S. military.11,23 Moreover, with the projected rise in the intensity and frequency of extreme heat conditions associated with global climate change, heat-related illnesses will likely represent an increasing challenge to the military.24–26

In the U.S. Military Health System (MHS), the most serious types of heat-related illness are considered notifiable medical events. Notifiable cases of heat illness include heat exhaustion and heat stroke. All cases of heat illness that require medical intervention or result in change of duty status are reportable.4

This report summarizes reportable medical events of heat illness as well as heat illness-related hospitalizations and ambulatory visits among active component service members during 2020 and compares them to the previous 4 years. Episodes of heat stroke and heat exhaustion are summarized separately.

METHODS

The surveillance period was 1 January 2016 through 31 December 2020. The surveillance population included all individuals who served in the active component of the Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. All data used to determine incident heat illness diagnoses were derived from records routinely maintained in the Defense Medical Surveillance System (DMSS). These records document both ambulatory encounters and hospitalizations of active component service members of the U.S. Armed Forces in fixed military and civilian (if reimbursed through the MHS) treatment facilities worldwide. In-theater diagnoses of heat illness were identified from medical records of service members deployed to Southwest Asia or the Middle East and whose health care encounters were documented in the Theater Medical Data Store. Because heat illnesses represent a threat to the health of individual service members and to military training and operations, the Armed Forces require expeditious reporting of these reportable medical events through any of the service specific electronic reporting systems; these reports are routinely transmitted and incorporated into the DMSS.

For this analysis, a case of heat illness was defined as an individual with 1) a hospitalization or outpatient medical encounter with a primary (first-listed) or secondary (second-listed) diagnosis of heat stroke (International Classification of Diseases, 9th Revision [ICD-9]: 992.0; International Classification of Diseases, 10th Revision [ICD-10]: T67.0*) or heat exhaustion (ICD-9: 992.3–992.5; ICD-10: T67.3*–T67.5*) or 2) a reportable medical event record of heat exhaustion or heat stroke.27 Because of an update to the Disease Reporting System internet (DRSi) medical event reporting system in July 2017, the type of reportable medical events for heat illness (i.e., heat stroke or heat exhaustion) could not be distinguished using reportable medical event records in DMSS data. Instead, information on the type of reportable medical event for heat illness during the entire 2016–2020 surveillance period was extracted directly from the records of the DRSi. It is important to note that MSMR analyses carried out before 2018 included diagnosis codes for other and unspecified effects of heat and light (ICD-9: 992.8 and 992.9; ICD-10: T67.8* and T67.9*) within the heat illness category “other heat illnesses.” These codes were excluded from the current analysis and the April MSMR analyses of 2018, 2019, and 2020. If an individual had a diagnosis for both heat stroke and heat exhaustion during a given year, only 1 diagnosis was selected, prioritizing heat stroke over heat exhaustion. Encounters for each individual within each calendar year then were prioritized in terms of record source with hospitalizations prioritized over reportable events, which were prioritized over ambulatory visits.

For surveillance purposes, a “recruit trainee” was defined as an active component service member (grades E1–E4) who was assigned to 1 of the services’ 8 recruit training locations (per the individual’s initial military personnel record). For this report, each service member was considered a recruit trainee for the period corresponding to the usual length of recruit training in his or her service. Recruit trainees were considered a separate category of enlisted service members in summaries of heat illnesses by military grade overall.

Records of medical evacuations from the U.S. Central Command (CENTCOM) area of responsibility (AOR) (e.g., Iraq or Afghanistan) to a medical treatment facility outside the CENTCOM AOR were analyzed separately. Evacuations were considered case defining if affected service members had at least 1 inpatient or outpatient heat illness medical encounter in a permanent military medical facility in the U.S. or Europe from 5 days before to 10 days after their evacuation dates.

It should be noted that medical data from sites that were using the new electronic health record for the Military Health System, MHS GENESIS, between July 2017 and October 2019 are not available in the DMSS. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, medical encounter data for individuals seeking care at any of these facilities from July 2017 through October 2019 were not included in the current analysis.

RESULTS

In 2020, there were 475 incident cases of heat stroke and 1,667 incident cases of heat exhaustion among active component service members (Table 1). The crude overall incidence rates of heat stroke and heat exhaustion were 0.36 and 1.26 per 1,000 person-years (p-yrs), respectively. In 2020, subgroup-specific incidence rates of heat stroke were highest among males, those less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations (Table 1). The rates of incident heat stroke among Marine Corps and Army members were more than 9 times the rates among Air Force and Navy members. The incidence rate of heat stroke among female service members was 48.2% lower than the rate among male service members. There were only 19 cases of heat stroke reported among recruit trainees, but their incidence rate was more than 2 times that of other enlisted members and officers.

The crude overall incidence rate of heat exhaustion among females was 22.0% lower than the rate among males (Table 1). In 2020, compared to their respective counterparts, service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and service members in combat-specific occupations had notably higher rates of incident heat exhaustion.

Crude (unadjusted) annual incidence rates of heat stroke increased steadily from 0.37 per 1,000 p-yrs in 2016 to 0.46 cases per 1,000 p-yrs in 2018 but then dropped to 0.41 cases per 1,000 p-yrs in 2019 and then to 0.36 cases per 1,000 p-yrs in 2020 (Figure 1). In the last year of the surveillance period, there were fewer heat stroke-related ambulatory visits than in any of the previous 4 years. Reportable medical events of heat stroke in 2020 (n=132) were the fewest since 2016 (n=93).
Crude annual rates of incident heat exhaustion were stable during 2016–2017, increased to a peak of 1.73 cases per 1,000 p-yrs in 2018, fell slightly in 2019, and then dropped sharply to the lowest value in the surveillance period, 1.26 per 1,000 p-yrs, in 2020 (Figure 2).

Heat illnesses by location

During the 5-year surveillance period, a total of 12,484 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide (Table 2). Of the total heat illness cases, 6.2% occurred outside of the U.S., including 315 in Okinawa and 463 at 59 other locations in Europe, East Asia, Southwest Asia, Africa, and Cuba. Four Army installations in the U.S. accounted for slightly more than one third (34.0%) of all heat illnesses during the period: Fort Benning, GA (n=1,849); Fort Bragg, NC (n=971); Fort Campbell, KY (n=756); and Fort Polk, LA (n=674). Six other locations accounted for an additional one-quarter (26.5%) of heat illness events: Marine Corps Base (MCB) Camp Lejeune/Cherry Point, NC (n=1,050); Marine Corps Recruit Depot Parris Island/ Beaufort, SC (n=576); Naval Medical Center San Diego, CA (n=531); MCB Camp Pendleton, CA (n=467); Fort Hood, TX (n=365); and Okinawa, Japan (n=315). Of these 10 locations with the most heat illness events, 6 are located in the southeastern U.S. During the surveillance period, 20 locations had more than 100 cases each; together, these locations accounted for over three-quarters (76.6%) of all cases among active component members.

Heat illnesses in Iraq and Afghanistan

During the 5-year surveillance period, a total of 341 heat illnesses were diagnosed and treated in Iraq and Afghanistan (Figure 3). Of the total cases, 7.0% (n=24) were diagnosed as heat stroke. Deployed service members who were affected by heat illnesses were most frequently male (n=279; 81.8%); non-Hispanic white (n=204; 59.8%); 20–24 years old (n=188; 55.1%); in the Army (n=163; 47.8%); enlisted (n=330; 96.8%); and in repair/engineering (n=109; 32.0%) or combat-specific (n=85; 24.9%) occupations (data not shown). During the surveillance period, 3 service members were medically evacuated for heat illnesses from Iraq or Afghanistan; 2 of the evacuations took place in the summer months (May 2017 and July 2016) and 1 in November 2020.

EDITORIAL COMMENT

This annual update of heat illnesses among service members in the active component documented that the unadjusted annual rates of incident heat stroke and heat exhaustion peaked in 2018 and then declined in 2019 and 2020. In fact the crude annual incidence rates of heat stroke and heat exhaustion in 2020 represent the lowest rates of the 5-year surveillance period.
There are significant limitations to this update that should be considered when interpreting the results. Similar heat related clinical illnesses are likely managed differently and reported with different diagnostic codes at different locations and in different clinical settings. Such differences undermine the validity of direct comparisons of rates of nominal heat stroke and heat exhaustion events across locations and settings. Also, heat illnesses during training exercises and deployments that are treated in field medical facilities are not completely ascertained as cases for this report. In addition, it should be noted that the guidelines for mandatory reporting of heat illnesses were modified in the 2017 revision of the Armed Forces guidelines and case definitions for reportable medical events and carried into the 2020 revision.4 In this updated version of the guidelines and case definitions, the heat injury category was removed, leaving only case classifications for heat stroke and heat exhaustion. To compensate for such possible variation in reporting, the analysis for this update, as in previous years, included cases identified in DMSS records of ambulatory care and hospitalizations using a consistent set of ICD-9/ICD-10 codes for the entire surveillance period. However, it also is important to note that the exclusion of diagnosis codes for other and unspecified effects of heat and light (formerly included within the heat illness category “other heat illnesses”) in the current analysis precludes the direct comparison of numbers and rates of cases of heat exhaustion to the numbers and rates of “other heat illnesses” reported in MSMR updates before 2018.

As has been noted in previous MSMR heat illness updates, results indicate that a sizable proportion of cases identified through DMSS records of ambulatory visits did not prompt mandatory reports through the reporting system.23 However, this study did not directly ascertain the overlap between hospitalizations and reportable events and the overlap between reportable events and outpatient encounters. It is possible that cases of heat illness, whether diagnosed during an inpatient or outpatient encounters, were not documented as reportable medical events because treatment providers were not attentive to the criteria for reporting or because of ambiguity in interpreting the criteria (e.g., the heat illness did not result in a change in duty status or the core body temperature measured during/ immediately after exertion or heat exposure was not available). Underreporting is especially concerning for cases of heat stroke because it may reflect insufficient attentiveness to the need for prompt recognition of cases of this dangerous illness and for timely intervention at the local level to prevent additional cases.

In spite of its limitations, this report demonstrates that heat illnesses continue to be a significant and persistent threat to both the health of U.S. military members and the effectiveness of military operations. Of all military members, the youngest and most inexperienced Marine Corps and Army members (particularly those training at installations in the southeastern U.S.) are at highest risk of heat illnesses, including heat stroke, exertional hyponatremia, and exertional rhabdomyolysis (see the other articles in this issue of the MSMR).

Commanders, small unit leaders, training cadre, and supporting medical personnel— particularly at recruit training centers and installations with large combat troop populations—must ensure that the military members whom they supervise and support are informed regarding the risks, preventive countermeasures (e.g., water consumption), early signs and symptoms, and first-responder actions related to heat illnesses.16–22,28–30 Leaders should be aware of the dangers of insufficient hydration on the one hand and excessive water intake on the other; they must have detailed knowledge of, and rigidly enforce countermeasures against, all types of heat illnesses. 

Policies, guidance, and other information related to heat illness prevention and sun safety among U.S. military members are available online through the Army Public Health Center website at https://phc.amedd.army.mil/topics/discond/hipss/Pages/default.aspx.

REFERENCES

1. Atha WF. Heat-related illness. Emerg Med Clin North Am. 2013;31(4):1097–1108.

2. Simon HB. Hyperthermia. N Engl J Med. 1993;329(7):483–487.

3. O’Connor FG, Sawka MN, Deuster P. Disorders due to heat and cold. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine. 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:692–693.

4. Armed Forces Health Surveillance Branch, Defense Health Agency. In collaboration with U.S. Air Force School of Aerospace Medicine, Army Public Health Center, and Navy and Marine Corps Public Health Center. Armed Forces Reportable Medical Events. Guidelines and Case Definitions, January 2020. Accessed 18 March 2021. https://health.mil/Reference-Center/Publications/2020/01/01/Armed-Forces-Reportable-Medical-Events-Guidelines

5. Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–647.

6. Epstein Y. Heat intolerance: predisposing factor or residual injury? Med Sci Sports Exerc. 1990;22(1):29–35.

7. O’Connor FG, Casa DJ, Bergeron MF, et al. American College of Sports Medicine roundtable on exertional heat stroke—return to duty/return to play: conference proceedings. Curr Sports Med Rep. 2010;9(5):314–321.

8. Shapiro Y, Magazanik A, Udassin R, Ben-Baruch G, Shvartz E, Shoenfeld Y. Heat intolerance in former heatstroke patients. Ann Intern Med. 1979;90(6):913–916.

9. Dematte JE, O’Mara K, Buescher J, et al. Nearfatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med. 1998;129(3):173–181.

10. Wallace RF, Kriebel D, Punnett L, Wegman DH, Amoroso PJ. Prior heat illness hospitalization and risk of early death. Environ Res. 2007;104(2):290–295.

11. Carter R 3rd, Cheuvront SN, Williams JO, et al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc. 2005;37(8):1338–1344.

12. Hancock PA, Ross JM, Szalma JL. A meta-analysis of performance response under thermal stressors. Hum Factors. 2007;49(5):851–877.

13. Caldwell JN, Engelen L, van der Henst C, Patterson MJ, Taylor NA. The interaction of body armor, low-intensity exercise, and hot-humid conditions on physiological strain and cognitive function. Mil Med. 2011;176(5):488–493.

14. Maynard SL, Kao R, Craig DG. Impact of personal protective equipment on clinical output and perceived exertion. J R Army Med Corps. 2016;162(3):180–183.

15. Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2012;97(3):327–332.

16. Goldman RF. Introduction to heat-related problems in military operations. In: Lounsbury DE, Bellamy RF, Zajtchuk R, eds. Textbook of Military Medicine: Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:3–49.

17. Sonna LA. Practical medical aspects of military operations in the heat. In: Lounsbury DE, Bellamy RF, Zajtchuk R, eds. Textbook of Military Medicine: Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:293–309.

18. Headquarters, Department of the Army and Air Force. Technical Bulletin, Medical 507, Air Force Pamphlet 48-152. Heat Stress Control and Heat Casualty Management. 7 March 2003.

19. Headquarters, United States Marine Corps, Department of the Navy. Marine Corps Order 6200.1E. Marine Corps Heat Injury Prevention Program. Washington DC: Department of the Navy; 6 June 2002.

20. Navy Environmental Health Center. Technical Manual NEHC-TM-OEM 6260.6A. Prevention and Treatment of Heat and Cold Stress Injuries. Published June 2007.

21. Webber BJ, Casa DJ, Beutler AI, Nye NS, Trueblood WE, O'Connor FG. Preventing exertional death in military trainees: recommendations and treatment algorithms from a multidisciplinary working group. Mil Med. 2016;181(4):311–318.

22. Lee JK, Kenefick RW, Cheuvront SN. Novel cooling strategies for military training and operations. J Strength Cond Res. 2015;29(suppl 11):S77–S81.

23. Armed Forces Health Surveillance Branch. Update: Heat illness, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(4):15–20.

24. Dahl K, Licker R, Abatzoglou JT, Declet-Barreto J. Increased frequency of and population exposure to extreme heat index days in the United States during the 21st century. Environ Res Commun. 2019;1:075002.

25. Parsons IT, Stacey MJ, Woods DR. Heat adaptation in military personnel: mitigating risk, maximizing performance. Front Physiol. 2019;10:1485.

26. Kenny GP, Notley SR, Flouris AD, Grundstein A. Climate change and heat exposure: impact on health in occupational and general populations. In: Adams W, Jardine J, eds. Exertional Heat Illness: A Clinical and Evidence-Based Guide. Cham, Switzerland: Springer Nature; 2020:225–261.

27. Armed Forces Health Surveillance Branch. Surveillance case definition: Heat illness. Accessed on 18 March 2021. https://health.mil/Reference-Center/Publications/2019/10/01/Heat-Injuries

28. Headquarters, Department of the Army Training and Doctrine Command. Memorandum. TRADOC Heat Illness Prevention Program 2018. 8 January 2018.

29. Kazman JB, O’Connor FG, Nelson DA, Deuster PA. Exertional heat illness in the military: risk mitigation. In: Hosokawa Y, ed. Human Health and Physical Activity During Heat Exposure. Cham, Switzerland: SpringerBriefs in Medical Earth Sciences; 2018:59–71.

30. Nye NS, O’Connor FG. Exertional heat illness considerations in the military. In: Adams W, Jardine J, eds. Exertional Heat Illness: A Clinical and Evidence- Based Guide. Cham, Switzerland: Springer Nature; 2020:181–210.

FIGURE 1. Incident casesa and incidence rates of heat stroke, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2016–2020
FIGURE 2. Incident casesa and incidence rates of heat exhaustion, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2016–2020
FIGURE 3. Numbers of heat illnesses diagnosed in Iraq/Afghanistan, active component, U.S. Armed Forces, 2016–2020

TABLE 1. Incident casesa and incidence ratesb of heat illness, by demographic and military characteristics, active component, U.S. Armed Forces, 2020

TABLE 2. Heat injury eventsa, by location of diagnosis/report (with at least 100 cases during the period), active component, U.S. Armed Forces, 2016–2020






You also may be interested in...

Cardiovascular Diseases

Infographic
4/4/2018
At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Mental Health Problems

Infographic
4/4/2018
This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus | Bug-Borne Illnesses

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Bug-Borne Illnesses

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Medical Surveillance Monthly Report | Epidemiology and Analysis

Cardiovascular Diseases

Infographic
4/4/2018
At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Mental Health Problems

Infographic
4/4/2018
This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus | Bug-Borne Illnesses

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Bug-Borne Illnesses

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Medical Surveillance Monthly Report | Epidemiology and Analysis
<< < ... 11 12 13 > >> 
Showing results 181 - 194 Page 13 of 13

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.