Back to Top Skip to main content Skip to sub-navigation

Brief Report: Prevalence of Hepatitis C Virus Infections in U.S. Air Force Basic Military Trainees Who Donated Blood, 2017–2020

Image of U.S. Army Staff Sgt. Brandon Sousa, 424th Engineer Vertical Construction Company, donates blood to the 379th Expeditionary Medical Group’s Blood Support Center, Aug. 30, 2021, at Al Udeid Air Base, Qatar. The blood support center conducted a walking blood bank to collect blood from prescreened and cleared donors. The blood was sent downrange to support Afghanistan evacuation operations. The DoD is committed to supporting the U.S. State Department in the departure of U.S. and allied civilian personnel from Afghanistan, and to evacuate Afghan allies to safety. (U.S. Air Force photo by Senior Airman Kylie Barrow). U.S. Army Staff Sgt. Brandon Sousa, 424th Engineer Vertical Construction Company, donates blood to the 379th Expeditionary Medical Group’s Blood Support Center, Aug. 30, 2021, at Al Udeid Air Base, Qatar. The blood support center conducted a walking blood bank to collect blood from prescreened and cleared donors. The blood was sent downrange to support Afghanistan evacuation operations. The DoD is committed to supporting the U.S. State Department in the departure of U.S. and allied civilian personnel from Afghanistan, and to evacuate Afghan allies to safety. (U.S. Air Force photo by Senior Airman Kylie Barrow)

Recommended Content:

Medical Surveillance Monthly Report

Background

Chronic infection with hepatitis C virus (HCV) can cause significant morbidity to individuals due to inflammatory damage to the liver. This chronic inflammatory damage can lead to further complications, including cirrhosis, hepatocellular carcinoma, and fulminant liver failure. In the military, HCV presents a concern for fitness for duty, readiness, and health care costs of its members.

In the U.S., prevalence of chronic HCV infection is approximately 1%.1 From 2010–2019, estimated annual acute HCV incidence increased 387%2; increased detection was driven at least in part by improved and expanded testing recommendations as well as increased injection drug use within the opioid abuse epidemic.3,4 During this timeframe, the majority of new HCV infections occurred in those aged 20–39 (which approximates the ages of those joining the military).2

In 2020, the American Association for the Study of Liver Diseases (AASLD),5 U.S. Preventive Services Task Force (USPSTF),6 and Centers for Disease Control and Prevention (CDC)7 expanded recommendations for HCV infection screening to include all adults age 18 years or older (and for all pregnant women during each pregnancy) because of cost effectiveness, limited success of risk-based screening, and availability of curative treatment.

Active HCV infection disqualifies an individual from military accession because its proper clinical management conflicts with initial training and mission readiness. Three disqualifying criteria for active or recent HCV infection include: history of chronic HCV without successful treatment or without documentation of cure 12 months after completion of a full course of therapy; acute infection within the preceding 6 months; or persistence of symptoms or evidence of impaired liver function. Force screening for HCV is not currently performed during U.S. Air Force (USAF) Basic Military Training (BMT) although screening is completed for other viral infections (including HIV, hepatitis A, and hepatitis B). As a result, the true prevalence of chronic HCV infection cannot be ascertained in the basic trainee population. However, the prevalence can be estimated based on the number of HCV infections confirmed following positive screening during trainee blood donations.

Trainees voluntarily donate blood near the end of BMT and are thus able to donate only once while at BMT. Concurrent testing for HCV antibody and HCV RNA occurs at the time of blood donation. If a trainee's blood tests positive for HCV antibody but negative for HCV RNA, a third generation enzyme immunoassay (EIA) is used for confirmation. A positive test for HCV antibody in addition to either a positive HCV RNA or EIA test indicates active infection. Alternatively, a positive HCV antibody test in an individual with negative RNA and EIA tests typically denotes a cleared infection.

From November 2013 through April 2016, the estimated prevalence of HCV infection among volunteer recruit blood donors at Joint Base San Antonio (JBSA)-Lackland Blood Donor Center was 0.007%.8 The goal of this inquiry was to estimate the most recent prevalence of HCV infections within the USAF basic training population during 2017–2020.

Methods

The JBSA-Lackland Blood Donor Center was queried for the results of HCV screening for all basic military trainees who donated blood between Jan. 1, 2017 and Dec. 31, 2020. All other blood donations (those from individuals other than basic trainees) during this time period were excluded. HCV prevalence in those who donated blood was calculated using the total trainee donations as the denominator. Since trainees are only able to donate once before departing BMT, these donations represent unique trainees. The numerator included those who screened positive upon donation and were also confirmed to have active infection upon subsequent testing. Positive HCV cases were ascertained from a local database, which included demographic, diagnostic, and laboratory data for all USAF recruits, maintained by Trainee Health Surveillance. This database was queried for International Classification of Diseases, 10th Revision (ICD-10) diagnostic codes K70–K77 (diseases of the liver) and B15–B19 (viral hepatitis); the codes for all hepatitides were initially utilized so as to conduct a wide search in case of coding errors. A possible case was defined as a trainee receiving a qualifying ICD-10 code in any diagnostic position during an outpatient medical encounter and was restricted to 1 case per person during the surveillance period. The electronic medical records of possible cases were reviewed and those diagnosed with current HCV infection due to blood screening from BMT blood donation were counted as true cases. Such screened positive BMT cases were confirmed by comparing them to those reported by the Blood Donation Center. The Fisher's exact test for count data was used to compare the prevalence computed for the period from 2017 through 2020 to the prevalence during the period from 2013 through 2016.

Results

From 2017 through 2020, 29,615 unique individual trainees from USAF BMT donated blood (out of 146,325 total trainees attending BMT during that time) and had their blood donations screened for HCV. From this group, a total of 85 individuals screened positive for HCV antibodies; of these, 6 were confirmed to be positive for active HCV infection (positive HCV RNA or EIA) (Table). The prevalence of HCV in those BMT trainees who were screened from 2017 through 2020 was 0.0203% (6 of 29,615 screened) (data not shown), which is 3.1 times (p=.173) the prevalence of HCV infection in this population during 2013–2016 (0.0065%, 2 of 30,660 screened).8 Of note, during 2017–2020, one additional case of HCV in BMT was diagnosed clinically based on symptoms; however, this case was excluded in the prevalence calculation because it was not from a blood donation.

Editorial Comment

The prevalence of HCV infection in BMT trainee blood donors from 2017 through 2020 was 3.1 times the prevalence among trainees who donated from 2013 through 2016.8 While the difference in prevalence was not statistically significant (p=.173), it may reflect the recent increases in incidence among U.S. young adults, as noted by the CDC,2 perhaps due to increased injection drug use.3,4

This study is limited in that the screened blood came from only those trainees attempting to donate blood, so the data do not directly estimate HCV prevalence for all trainees as would be the case from a random sample of the entire BMT trainee population. If the prevalence in blood donors reflected that in basic trainees overall, there would have been approximately 30 active HCV infections among basic trainees during the 4 year period; and of these, only approximately 20% were detected through blood donor screening.

Instituting accession-wide HCV screening at USAF BMT by adding it to the current lab evaluation would be an efficient method of ensuring that all new USAF enlisted service members are up to date on this screening as recommended by USPSTF, CDC, and AASLD.

Author affiliations: 559th Trainee Health Squadron, JBSA-Lackland, TX (Maj Kasper, Capt Holland, and Maj Kieffer); Office of the Command Surgeon, Air Education and Training, JBSA-Randolph, TX (Maj Frankel); 59th Medical Wing, Science and Technology, JBSA-Lackland, TX (Ms. Cockerell); Air Force Medical Readiness Agency, Falls Church, VA (Lt Col Molchan).

Disclaimer: The views expressed are those of the authors and do not reflect the official views or policy of the Department of Defense or its Components. In addition, the opinions expressed on this document are solely those of the authors and do not represent endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

References

1. Hofmeister MG, Rosenthal EM, Barker LK, et al. Estimating prevalence of hepatitis C virus infection in the United States, 2013–2016. Hepatology. 2019;69(3):1020–1031.

2. Centers for Disease Control and Prevention. 2019 Viral Hepatitis Surveillance Report- Hepatitis C. Published July 2021. Accessed 9 August 2021. https://www.cdc.gov/hepatitis/statistics/2019surveillance/HepC.htm

3. Zibbell JE, Asher AK, Patel RC, et al. Increases in acute hepatitis C virus infection related to a growing opioid epidemic and associated injection drug use, United States, 2004 to 2014. Am J Public Health. 2018;108(2):175–181.

4. Suryaprasad AG, White JZ, Xu F, et al. Emerging epidemic of hepatitis C virus infections among young nonurban persons who inject drugs in the United States, 2006-2012. Clin Infect Dis. 2014;59(10):1411–1419.

5. Ghany MG, Morgan TR; AASLD-IDSA Hepatitis C Guidance Panel. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases – Infectious Diseases Society of America recommendations for testing, managing, and treating hepatitis C virus infection. Hepatology. 2020;71(2):686–721.

6. US Preventive Services Task Force; Owens DK, Davidson KW, et al. Screening for hepatitis C virus infection in adolescents and adults: US Preventive Services Task Force Recommendation Statement. JAMA. 2020;323(10):970–975.

7. Schillie S, Wester C, Osborne M, Wesolowski L, Ryerson AB. CDC Recommendations for hepatitis C screening among adults - United States, 2020. MMWR Recomm Rep. 2020;69(2):1–17.

8. Taylor DF, Cho RS, Okulicz JF, Webber BJ, Gancayco JG. Brief report: Prevalence of hepatitis B and C virus infections in U.S. Air Force basic military trainees who donated blood, 2013-2016. MSMR. 2017;24(12):20–22.

TABLE. Demographics and disposition of the 6 confirmed HCV cases identified through blood donation screening at Air Force Basic Military Training, 2017–2020

You also may be interested in...

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

Article
4/1/2019
A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to healthcare providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal—the white-tailed deer.

Recommended Content:

Medical Surveillance Monthly Report

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through September, and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing’s syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 > >> 
Showing results 151 - 163 Page 11 of 11
Refine your search
Last Updated: January 19, 2022

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.