Skip to main content

Military Health System

Obesity prevalence among active component service members prior to and during the COVID-19 pandemic, January 2018–July 2021

Image of Cover 2. Cover 2

Recommended Content:

Medical Surveillance Monthly Report

Abstract

This study examined monthly prevalence of obesity and exercise in active component U.S. military members prior to and during the COVID-19 pandemic. Information about obesity (BMI≥30) and self-reported vigorous exercise (≥150 minutes per week) were collected from Periodic Health Assessment (PHA) data. From 1 January 2018 through 31 July 2021, there was a gradual increase in obesity and an overall decrease in vigorous exercise. Comparing the mean monthly percentage of obesity during the 12-month period prior to the pandemic to the 12 months after its start showed an overall increase in obesity (0.43%); however, no obvious spike in the obesity trend was apparent following the onset of the pandemic. The prevalence of vigorous exercise showed an abrupt decrease following the onset of the COVID-19 pandemic, but this change did not coincide with an abrupt change in the obesity trend. These results suggest that the COVID-19 pandemic had a small effect on the trend of obesity in the active component U.S. military and that obesity prevalence continues to increase.

What are the New Findings?

The prevalence of obesity in the military, as measured by the PHA, had been increasing prior to the pandemic and has continued to do so since the start of the pandemic. However, the onset of COVID-19 and the decline in self-reported exercise behaviors did not appear to have a large impact on the magnitude of the increasing trend in obesity prevalence.

What is the Impact on Readiness and Force Health Protection?

Understanding the impacts of COVID-19 lockdowns on fitness and health could assist in guiding policies to maintain health and readiness should future pandemics or societal disruptions occur.

Background

The increasing prevalence of obesity is a major problem affecting the overall and long-term health of the U.S. population. During 2017–2018, 42.4% of all U.S. adults met the threshold for obesity and 9.2% were classified as severely obese compared to 30.5% and 4.7% in 1999–2000, respectively.1 Obesity is responsible for an estimated $190 billion in excess medical costs and over 100,000 preventable cancer cases each year.2,3

The worsening trend of weight gain in the American public has also been reflected within the armed services. The overall prevalence of obesity within the active component increased from 16.3% in 2015 to 17.9% in 2019.4 As per Department of Defense Directive No. 1308.1, "Maintaining desirable body composition is an integral part of physical fitness, general health, and military appearance".5 Not only does obesity within the military ranks negatively impact the professional perception of the military, it also compromises its readiness and leads to functional limitations. For example, incidence of musculoskeletal injuries,excess health care utilization, and 90 day attrition have been found to be higher in overweight and obese service members and military recruits.7,8 In addition to various adverse physical effects, obesity is associated with multiple mental health disorders including depression, anxiety, and substance abuse disorders.9,10

The onset of the COVID-19 pandemic in March 202011 led to significant restrictions in activities that may have further exacerbated the worsening problem of obesity within the active military. This study sought to explore trends in population-level prevalence of obesity within the active component U.S. military population before and after the start of the COVID-19 pandemic. Investigations of the general public during COVID-19 have shown that members of certain demographic groups (race, ethnicity, age, and income) were more susceptible to weight gain during pandemic lockdowns.12 As pandemic and lockdown events continue to be a concern into the foreseeable future, evaluating multiple covariates within this population may help to identify certain groups that are more susceptible to weight gain under these conditions. Insight into this subject within the U.S. military could help inform the development of systems that maintain health and military readiness should any future societal disruptions occur.

For many reasons, the pandemic may have influenced obesity prevalence; they include halting of daily unit physical training, deferred physical fitness testing, and stay at home orders restricting non-essential movement. Not surprisingly, previous investigations into the overweight or obesity status of military personnel have shown vigorous exercise to be inversely associated with obesity,13 but there are other factors like overeating and stress that may have had an impact on service members' weights during this time.

Reducing attrition and retaining personnel is a constant problem for the armed services. Almost three-quarters (71%) of young adults in the U.S. between the ages of 17 and 24 do not meet requirements for military service because of inadequate educational attainment, overweight/obesity and other physical conditions, or history of criminal activity or illicit drug use.14 This concerning statistic highlights the importance of retaining qualified personnel, as the pool of qualified candidates has become increasingly smaller over time.

The overall objective of this study was to assess the relationship between COVID-19 and obesity prevalence in active component U.S. military members via 3 aims. The first aim was to determine the prevalence of obesity before and after the start of the COVID-19 pandemic. The second aim was to evaluate the trend of service member self-reported vigorous exercise during the COVID-19 pandemic. The third aim was to identify how many service members were separated from service due to obesity, with the goal of gauging the recent impact of obesity on attrition in the active component U.S. military and potentially identifying areas of focus to reduce weight gain and aid in service member retention.

Methods

The study population for this investigation included active component U.S. military members in the Army, Navy, Air Force, and Marine Corps who completed a Periodic Health Assessment (PHA) between Jan. 1, 2018 and July 31, 2021. PHA and demographic data were obtained from the Defense Medical Surveillance System (DMSS), which serves as the central repository of medical surveillance data for the U.S. Armed Forces. Women with a pregnancy/birth-related diagnosis (International Classification of Diseases, 10th Revision [ICD-10] code beginning with "O") in any diagnostic position in a record of an inpatient or outpatient encounter within 9 months of the date that their weight was recorded were excluded. Duplicate PHAs or those with listed weight more than 1 year old were also excluded.

Each service member is required to complete a PHA annually. Height (recorded in inches) and weight (recorded in pounds) data were obtained from Section II questions 2 and 3 of the PHA and are recorded by the service provider at the time of the PHA encounter, or derived from the patient medical record. Height and weight were subsequently used to calculate body mass index (BMI) using the formula: weight (lb) x 703/[height (in)]2.15 A service member with a BMI ≥30 was classified as obese.16 Records where weight was less than 40 lb or greater than 370 lb, height was less than 30 inches or greater than 100 inches, and where BMI was less than 12 or greater than 45 were excluded, as these measurements were assumed to be data entry errors.

Monthly PHA data on physical activity were obtained from the results of section VII question 6: "In a typical week, I do VIGOROUS physical activities (VIGOROUS activities cause HEAVY sweating or LARGE increases in breathing or heart rate) __ Days per week; __ Minutes per day on the days you do work out". Minutes per day of vigorous exercise was multiplied by days exercised per week to determine total minutes per week of vigorous exercise. All military service members are expected to exercise 5 days a week as part of their duty requirements. For the purpose of this study, those service members endorsing 30 minutes of vigorous intensity exercise 5 times a week (totaling 150 minutes) were considered to have met vigorous exercise requirements. Service members on a profile limiting their ability to participate fully in a physical fitness test were identified by a "yes" response on section IV question 8.a. of the PHA "Do you currently have a waiver or profile for any part of your Service's physical fitness test?"

DMSS data were used to identify individuals separated from service using interservice separation codes (ISC) 1017 and 2017 (failure to meet weight or body fat standards). Those who had their weight recorded between Jan. 1, 2018 and Dec. 31, 2019 and were classified as obese were followed through the latest date that separation data were available, which was Aug. 31, 2021 at the time of the analysis. In addition, the median number of days since diagnosis of obesity was summarized and stratified by sex, age group, military service branch, race/ethnicity group, rank, marital status, education level, military occupation, geographic region at the time of the weight measurement, and whether the service member had a waiver or profile for any part of the physical fitness test reported at the time of the PHA.

To assess trends in prevalence of obesity within the active component U.S. military population before and during the COVID-19 pandemic, the prevalence of obesity for each month in the surveillance period was calculated using the date of the weight measurement. In addition, trends were stratified by presence of fitness test limiting profile and self-reported weekly vigorous exercise of at least 150 minutes/week. Among the service members who completed a PHA between Aug. 1, 2020 and July 31, 2021, prevalence of obesity was calculated for each of the covariates of interest to determine which subgroups were more or less likely to be obese. Mean change in monthly prevalence of obesity was also calculated by subtracting the mean monthly obesity prevalence during the 1-year period prior to the declaration of the pandemic (March 2019–February 2020) from the 1-year period after the start of the pandemic (March 2020–February 2021).

Results

A total of 2,948,625 PHAs were completed from Jan. 1, 2018 through July 31, 2021. Of these completed assessments, 315,960 (10.7%) contained missing or invalid BMI values and were excluded (data not shown). The majority of PHAs (84.3%) were completed by male service members and 15.6% were completed by female service members, which closely approximates the sex distribution of the active component. The population of service members who completed PHAs during the surveillance period also closely approximated estimates of the active component overall in terms of marital status, education level, rank, and age.17 However, the Navy was underrepresented in the population of service members who completed PHAs; Navy members made up 17.5% of the study population compared to 25.1% of the total population of active component service members in 2019.17

During the study period, the monthly prevalence of obesity ranged from a low of 15.0% in August 2020 to a high of 19.3% in April 2021 with substantial fluctuations by month throughout the period (Figure 1). There was a 0.33% absolute increase in mean monthly obesity prevalence between the 12-month period prior to the pandemic and the 12 months after the start of the pandemic (Table 1). Examination of the consecutive monthly absolute differences in obesity prevalence over time showed seasonal patterns with consecutive monthly increases in obesity prevalence generally occurring during winter months and consecutive monthly decreases tending to occur in summer months (Figure 2). Among female service members, the absolute difference between the mean monthly obesity prevalence during the pandemic period and the pre-pandemic period was 0.90% compared to a 0.26% rise in men (Table 1). Among the services, the Navy and Marine Corps demonstrated the largest absolute increase in mean monthly obesity prevalence from the pre-pandemic period to the pandemic period (0.78% and 0.77%, respectively). Compared to their respective counterparts, other relatively high absolute increases in mean monthly obesity prevalence occurred among service members aged 40 years or older (0.82%), non-Hispanic Black service members (0.48%), junior enlisted members (0.62%), those with "other" marital status (0.75%), and those with an occupation in motor transport (0.75%) (Table 1).

The percentage of active component service members reporting vigorous exercise fluctuated throughout the surveillance period and did not coincide with a shift in the overall obesity trend (Figure 3). Evaluation of the consecutive monthly absolute differences in vigorous exercise over time showed seasonal patterns where vigorous exercise prevalence tended to have consecutive monthly increases beginning in early spring and consecutive monthly decreases beginning in early fall (Figure 4). Comparison of the average monthly prevalence of vigorous exercise in the 12 months before and after the start of the pandemic demonstrated that vigorous exercise decreased variably across the service branches with the Navy showing the greatest absolute decrease of 5.2% (Table 2). Active component service members in combat-specific occupations displayed fewer fluctuations over time in the percentages meeting the vigorous exercise requirement compared to those in other occupational groups (Figure 5). Exercise trends by age group, rank, sex, race/ethnicity group, and service branch were similar throughout the surveillance period (data not shown).

A total of 878 service members (0.46%) who had their weight measured between Jan. 1, 2018 and Dec. 31, 2019 were separated from service by August 2021 for failure to meet weight or body fat standards (Table 3). The median time from being classified as obese to separation from military service was 324 days. Higher percentages of obese active component service members aged 18–20 (2.35%) and 20–24 (1.30%) were separated because of obesity compared to older service members, especially those aged 40 or older (0.02%). Junior enlisted personnel were more likely to be separated for obesity (1.39%) compared to senior enlisted (0.12%) or junior officers (0.05%), and there were no senior officers (O4–O10) or warrant officers separated during the study period. Army and Marine Corps members were more likely to be separated for obesity, at 1.04% and 0.93%, respectively, compared to <0.01% in the Air Force and the Navy.

Editorial Comment

The trends identified in this study suggest that the COVID-19 pandemic may have been associated with an increase in obesity prevalence among active component service members, but it was not an immediate abrupt jump in obesity prevalence. Instead, the steadily increasing trend of obesity that occurred prior to the pandemic continued with only a modest increase beginning in August 2020. Given the abrupt implementation of COVID-19 restrictions, which included the closing of gyms and parks, modification of many military base operations, as well as an increase in alcohol consumption, screen time, and decreased exercise among U.S. adults,18 a larger increase in the prevalence of obesity might have been expected.

Examination of trends in the prevalence of obesity and percentages of active component service members meeting minimum exercise requirements revealed cyclical patterns. During the pre-pandemic period, obesity prevalence generally peaked in March and April followed by pronounced drops in the summer months. This pattern was even more pronounced after the start of the pandemic with obesity prevalence peaking in April 2021 at a level higher than at any point during in the pre-pandemic period.

A potential explanation for this pattern could be seasonal behaviors following the holiday and Permanent Change of Station (PCS) seasons that lead to service members gaining weight and subsequently dropping weight afterwards in order to pass biannual testing for height and weight. Prevalence of vigorous exercise, on the other hand, increased in the early spring and peaked at the start of fall, which may be reflective of changes in the ambient temperature and outdoor exercise conditions. Service members in combat-specific occupations, who are most strictly held to daily physical training regimens as part of their profession, showed the least seasonal change in exercise compared to other service members, further supporting this explanation.

There have been few studies in adults studying the longitudinal effects of the COVID-19 pandemic on obesity, but a study of the civilian U.S. population evaluating 2–20 year-olds showed an increase in obesity in all age groups evaluated.19 Though there are substantial differences in the ages and health profiles of these populations, this investigation showed similar findings with subjects in every age category showing increased prevalence of obesity secondary to the pandemic. Military members continue to maintain obesity levels well below their respective civilian counterparts;however, the continued rise in obesity in the military is concerning.

Younger and lower ranking service members were more likely to be separated for failure to meet height/weight standards. One explanation for this could be that those service members who screened positive for obesity at an earlier point in their careers are more likely to fail verification via service-specific body measurements ("tape testing") compared to those who have served longer. It is also possible that higher ranking individuals with more time in service are less easily replaceable and therefore less likely to have this standard applied for separation due to manning concerns. Considering they had just recently met height and weight standards to qualify for accession, this raises the possibility that better instilling good exercise and dietary habits in young service members could lead to better overall retention of this subgroup.

This is one of the first studies to evaluate obesity trends in the military in the context of COVID-19. However, there are several limitations that should be considered when interpreting the results. First, BMI calculations do not account for variability in body type or muscular composition, especially in a young athletic population; therefore, BMI measurements use can lead to misclassification bias in favor of obesity, but these instances are rare. More accurate reporting of obesity could be performed by using results from each service's follow-on body composition testing; however, these data were not available for this study. Second, service members' vigorous exercise results were based on self-reporting and did not include moderate exercise, so the estimates presented here may not be an accurate representation of total physical exertion.

Future studies could consider studying a retrospective cohort of service members who became obese during the pandemic to identify specific risk factors for weight gain, as this could help to elucidate trends that were difficult to detect on a population level via this study of cross-sectional monthly prevalence. Such a study design would allow for examination of factors like dietary intake, and alcohol and tobacco consumption, all of which may have changed during the pandemic.18 The evidence of the cyclic trends of obesity and exercise also warrants further investigation as these patterns may reveal a failure to maintain accountability of service members' fitness outside of the times when physical fitness testing is performed. Identifying ways to improve consistent behaviors throughout the year may help to stem the increasing levels of obesity observed in the military. If this increasing obesity trend continues, current anti-obesity initiatives including utilization of wellness centers, dietary options in base dining facilities, and hours restricting access to exercise facilities should be re-examined to better tackle this problem.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the Department of Defense or the U.S. Government.

Author affiliations: Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD (MAJ Legg); Defense Health Agency, Armed Forces Health Surveillance Division, Silver Spring, MD (Dr. Stahlman, Dr. Chauhan, Dr. Patel, Ms. Hu, and CAPT Wells).

References

1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020(360):1–8.

2. Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46.

3. Cawley J, Meyerhoefer C. The medical care costs of obesity: an instrumental variables approach. J Health Econ. 2012;31(1):219–230.

4. Armed Forces Health Surveillance Division. Department of Defense Health of the Force 2019. 2020. Accessed 4 November 2021. https://www.health.mil/Military-Health-Topics/Combat-Support/Armed-Forces-Health-Surveillance-Division/Reports-and-Publications

5. Department of Defense. Directive Number 1308.1 DoD Physical Fitness and Body Fat Programs. 30 June 2004.

6. Dos Santos Bunn P, de Oliveira Meireles F, de Souza Sodre R, Rodrigues AI, da Silva EB. Risk factors for musculoskeletal injuries in military personnel: a systematic review with meta-analysis. Int Arch Occup Environ Health. 2021;94(6):1173–1189.

7. Krauss MR, Garvin NU, Boivin MR, Cowan DN. Excess stress fractures, musculoskeletal injuries, and health care utilization among unfit and overweight female Army trainees. Am J Sports Med. 2017;45(2):311–316.

8. Cowan DN, Bedno SA, Urban N, Yi B, Niebuhr DW. Musculoskeletal injuries among overweight army trainees: Incidence and health care utilization. Occup Med (Lond). 2011;61(4):247–252.

9. Petry NM, Barry D, Pietrzak RH, Wagner JA. Overweight and obesity are associated with psychiatric disorders: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychosom Med. 2008;70(3):288–297.

10. Rivenes AC, Harvey SB, Mykletun A. The relationship between abdominal fat, obesity, and common mental disorders: results from the HUNT study. J Psychosom Res. 2009;66(4):269–275.

11. World Health Organization. Archived: WHO Timeline-COVID-19. Accessed 4 November 2021. https://www.who.int/news/item/29-06-2020-covidtimeline.

12. Jenssen BP, Kelly MK, Powell M, Bouchelle Z, Mayne SL, Fiks AG. COVID-19 and changes in child obesity. Pediatrics. 2021;147(5):e2021050123..

13. Reyes-Guzman CM, Bray RM, Forman-Hoffman VL, Williams J. Overweight and obesity trends among active duty military personnel: a 13-year perspective. Am J Prev Med. 2015;48(2):145–153.

14. Council for a Strong America; 2020. Breaking Point: Child malnutrition imperils America's national security. Accessed 10 October, 2021.c https://www.cdc.gov/obesity/adult/defining.html

15. Centers for Disease Control and Prevention. Healthy Weight, Nutrition, and Physical Activity. About Adult BMI. Accessed 4 November 2021. https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html

16. Centers for Disease Control and Prevention. Overweight & Obesity. Defining Adult Overweight & Obesity. Accessed 27 September 2021. https://www.cdc.gov/obesity/adult/defining.html

17. Department of Defense, Office of the Deputy Assistant Secretary of Defense for Military Community and Family Policy (ODASD (MC&FP)). 2019. Demographics: Profile of the Military Community. 2020.

18. Chen L, Li J, Xia T, et al. Changes of exercise, screen time, fast food consumption, alcohol, and cigarette smoking during the COVID-19 pandemic among adults in the United States. Nutrients. 2021;13(10):3359.

19. Lange SJ, Kompaniyets L, Freedman DS, et al. Longitudinal trends in body mass index before and during the COVID-19 pandemic among persons aged 2–19 years - United States, 2018–2020. MMWR Morb Mortal Wkly Rep. 2021;70(37):1278–1283.

FIGURE 1. Obesity prevalence among active component service members who completed PHAs, U.S. Armed Forces, January 2018–July 2021

FIGURE 2. Monthly differences in obesity prevalence in the active component, U.S. Armed Forces, February 2018–July 2021

FIGURE 3. Obesity prevalence compared to prevalence of active component service members meeting vigorous exercise requirements, January 2018–July 2021

FIGURE 4. Monthly absolute differences in prevalence of active component service members meeting vigorous exercise requirement, February 2018–July 2021

FIGURE 5. Percentages of active component service members who reported meeting the vigorous exercise requirements on the PHA, U.S. Armed Forces, January 2018–July 2021

TABLE 1. Percentage of active component service members who completed PHAsª and were classified as obese, by demographic and military characteristics

TABLE 2. Percentage of active component service members who reported ≥150 minutes of vigorous physical activity on PHAs by demographic and military characteristics

TABLE 3. Obese service members who were subsequently separated for failure to meet weight or body fat standards, active component service members with a BMI measurement classifying them as obese during 1 January 2018–31 December 2019

You also may be interested in...

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 2

Recommended Content:

Medical Surveillance Monthly Report

Medical evacuations out of the U.S. Central Command, active and reserve components, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 3

The number of medical evacuations for battle injuries has decreased considerably since 2014. Most medical evacuations in 2018 were attributed to mental health disorders, followed by non-battle injury/poisoning; signs, symptoms, and ill-defined conditions; musculoskeletal disorders; and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 2

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory visits, active component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 1

Musculoskeletal disorders and mental health disorders accounted for more than half (52.6%) of all illness- and injury-related ambulatory encounters among active component service members in 2018. Since 2014, the number of ambulatory visits for mental health disorders has decreased, while the numbers of ambulatory visits for musculoskeletal system/connective tissue disorders, nervous system and sense organ disorders, and respiratory system disorders have increased.

Recommended Content:

Medical Surveillance Monthly Report

Morbidity burdens attributable to various illnesses and injuries, deployed active and reserve component service members, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 1

Among service members deployed during 2018, injury/poisoning, musculoskeletal diseases, and signs/symptoms accounted for more than half of the total health care burden while deployed. Compared to the distribution of major burden of disease categories documented in garrison, a relatively greater proportion of in-theater medical encounters due to respiratory infections, skin diseases, infectious/parasitic diseases, and digestive diseases was documented.

Recommended Content:

Medical Surveillance Monthly Report

Hospitalizations, active component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 2

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 1

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and healthcare burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and relative morbidity burdens attributable to various illnesses and injuries, non-service member beneficiaries of the Military Health System, 2018

Article
5/1/2019
Cover 4

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and health care burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through Sept., and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

Article
4/1/2019
A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to health care providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal—the white-tailed deer.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Neisseria gonorrhoeae Photo Courtesy of CDC: M Rein

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 12 13 14 > >> 
Showing results 181 - 195 Page 13 of 14
Refine your search
Last Updated: May 20, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery