Skip main navigation

Military Health System

Clear Your Browser Cache

This website has recently undergone changes. As a result, the website is experiencing intermittent interruptions. We're aware of this issue and we're working to resolve these issues. Users finding unexpected concerns may care to clear their browser's cache to ensure a seamless experience.

Brief Review: Clinical and Epidemiologic Characteristics of Genital Skin Lesions Due to Infectious Causes

Image of Brief Review: Clinical and Epidemiologic Characteristics of Genital Skin Lesions Due to Infectious Causes. Brief Review: Clinical and Epidemiologic Characteristics of Genital Skin Lesions Due to Infectious Causes

BACKGROUND

During the current global mpox outbreak, many cases have presented atypically with skin lesions localized to the genital and perianal areas.1,2 The rash associated with mpox can be confused, or occur concurrently, with various sexually transmitted infections. The following text and Table provide a brief comparison of mpox characteristics to those of other infectious causes of genital skin lesions.

METHODS

Literature from 2 textbooks, Genital Ulcer Adenopathy Syndrome and Hunter's Tropical Medicine and Emerging Infectious Diseases, were reviewed and summarized to compare clinical aspects of infectious disease skin lesions to include: incubation period, lesion characteristics (i.e., type, number, progression pattern, border, depth, induration), and presence of pain or lymphadenopathy.3,4 Mpox skin lesion features recorded in historical and current outbreaks were incorporated as well. Additionally, U.S. and military disease rates (where available) were added to provide epidemiologic context for the frequency of these infectious diseases.

RESULTS

Mpox

Mpox classically presents with fever, myalgia, and lymphadenopathy, followed 1-3 days later by a centrifugal rash that starts on the face and extremities and then disseminates across the body. In the current outbreak, however, early lesions have often been localized to the genital and perineal/perianal areas because of close sexual or intimate contact.1,2 The incubation period is 6-13 days, and lesions typically evolve synchronously through four stages—-mac­ular, papular, vesicular, to pustular—-before scabbing and resolving over the subsequent 2-4 weeks. The 2-10 mm lesions usually are painful, firm, well-circumscribed, and centrally umbilicated.5 

Herpes simplex virus

In the U.S., herpes simplex virus (HSV-1 or HSV-2) is the most common cause of genital ulcers, affecting 5.6% of the U.S. adult population, with over half a million new cases annually.6 Among active component service members, the incidence rate of HSV infections from 2013 through 2021 was 23.3 cases per 10,000 person-years (p-yrs), and the rate was 4.5 times higher in females (68.0 cases per 10,000 p-yrs) compared to males.7 The incubation period is 2-12 days, and herpetic lesions begin as a cluster of multiple, 2-4 mm vesicles with an underlying erythematous base. These fragile lesions rupture, progressing to painful erosions and shallow ulcerations that gradually heal over 4-10 days. 

Syphilis

Syphilis, caused by the bacterium Treponema pallidum, is the second most common cause of genital ulcers in the U.S.7 Among active component service members, the incidence rate of syphilis was 5.0 cases per 10,000 p-yrs from 2013 through 2021.8 The primary syphilis lesion (chancre) begins as a solitary, firm papule that quickly becomes a painless ulcer with well-defined margins and indurated base. The incubation period is 10-90 days, and the ulcer heals spontaneously within 3-6 weeks. Although the maculopapular rash associated with secondary syphilis usually appears 4-10 weeks after the primary chancre, primary and secondary syphilis findings overlap in 15% of cases.9  

Chancroid

The gram-negative bacterium Haemophilus ducreyi causes chancroid, which is rarely diagnosed in the U.S., with less than 10 cases reported annually.10 Sporadic outbreaks occur in Africa and the Caribbean.9,11 The incubation period is 4-10 days, and begins as an erythematous papule that rapidly evolves into a pustule and erodes into a deep ulcer.  These painful 1-2 cm ulcers have clearly demarcated borders with a friable base covered by a gray or yellow exudate. It is common to have multiple ulcers.

Lymphogranuloma venereum (LGV)

LGV is predominantly found in tropical or subtropical regions, but outbreaks have been reported among men who have sex with men in Europe, North America, and Australia.12,13 The true incidence rate of this bacterial infection in the U.S. and among service members is unknown because national reporting of LGV ended in 1995. LGV is caused by Chlamydia trachomatis serovars L1, L2, or L3. A 2011 report of surveillance data from multiple sites in the U.S. found that less than 1% of rectal swabs obtained from military service members positive for Chlamydia trachomatis were positive for LGV serovars.14 LGV infection has 3 stages: ulceration, regional lymphadenopathy, anogenital fibrosis. The incubation period is 3-12 days, and the primary stage of LGV is characterized by small, painless genital papules or ulcers that heal spontaneously within a few days. 

Granuloma inguinale (Donovanosis)

Donovanosis is a rare disease caused by the intracellular bacterium Klebsiella granulomatis and is sporadically found in Asia, South Africa, and South America.9 In a recent MSMR surveillance snapshot on donovanosis among active component service members, only 50 incident cases were identified between 2011 and 2020, with 3-10 cases reported annually.15 It is characterized by painless, progressive ulcers on the genitals or perineum that are highly vascular, have a beefy red appearance, and easily bleed. The incubation period ranges from 1-90 days. 

Varicella-zoster virus (chickenpox/shingles)

The incidence rate of chickenpox infections in the U.S. dramatically decreased following the implementation of the national varicella vaccination program in 1995, with a 97% decline from pre-vaccine years.16 Among active component service members, only 37 confirmed and 205 possible cases were reported between 2016 and 2019.17 Chickenpox presents as multiple red papules in a centripetal distribution, involving the scalp, face, and trunk, then spreading across the body (including the genital area). The incubation period is 14-16 days with prodromal symptoms (fever, headache, malaise, decreased appetite) prior to rash appearance. The itchy lesions progress asynchronously from papules to vesicles (1-4mm) and then rupture and crust or scab over during a final 5-10 days.18 Reactivation of varicella-zoster virus (shingles) presents as multiple, small vesicles in a unilateral dermatomal distribution and may be associated with severe pain, pruritus, and/or burning sensation in the affected dermatome. Vesicles crust over in 7-10 days. 

EDITORIAL COMMENT

While mpox is not traditionally known as a sexually transmitted disease, in the current outbreak transmission has primarily been reported with intimate or close sexual contact. This highlights the importance of understanding the differential diagnosis for infectious causes of genital skin lesions, especially in a predominantly young adult military population. Summarizing other infectious diseases provides a framework to more expeditiously diagnose and treat mpox. The table and accompanying text in this article provide a succinct review to compare and contrast these infectious diseases. Additionally, reports of disease rates of each infection provide perspective for the U.S. military population. As the mpox outbreak is new and evolving, case rates are not yet well described. Infectious genital skin lesions and other sexually transmitted infections may occur concurrently, thus testing for co-infections is important to quickly identify all pathogens and appropriately treat individuals.

Disclaimer

The contents described in this publication are those of the authors and do not necessarily reflect official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense, or the Department of the Air Force.

Author affiliations

Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Lt Col Hsu); Air Force Medical Readiness Agency, Falls Church, VA (Lt Col Sayers).

REFERENCES

  1. Minhaj FS, Ogale YP, Whitehill F, et al. Monkeypox outbreak—-nine states, May 2022. MMWR. 2022;71(23):764-769.
  2. Thornhill JP, Barkati S, Walmsley S, et al. Monkeypox virus infection in humans across 16 countries—-April–June 2022. N Engl J Med. 2022:387:679-691.  
  3. Kraus SJ. Genital ulcer adenopathy syndrome. In: Holmes KK, Mardh PA, Sparling PF, Wiesner PJ, eds. Sexually Transmitted Diseases. New York, McGraw-Hill; 1984:706-714.
  4. Magill, AJ, Ryan ET, Hill DR. Hunter's Tropical Medicine and Emerging Infectious Disease: Expert Consult—-Online and Print. Elsevier Health Sciences, 2012. 
  5. Macneil A, Reynolds MG, Braden Z, et al. Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin Infect Dis. 2009;48(1):e6-e8. doi:10.1086/595552
  6. Kreisel KM, Spicknall IH, Gargano JW, et al. Sexually transmitted infections among U.S. women and men: prevalence and incidence estimates, 2018. Sex Transm Dis. 2021;48(4):208-214. doi:10.1097/OLQ.0000000000001355
  7. Roett MA, Mayor MT, Uduhiri KA. Diagnosis and management of genital ulcers. Am Fam Physician. 2012:85(3):254-262.
  8. Armed Forces Health Surveillance Department. Update: sexually transmitted infections, active component, U.S. Armed Forces, 2012-2020. MSMR. 2021;28(3):13-22
  9. Dombrowski JC, Celum C, Baeten J. Chapter 43: Syphilis. In: Sanford CA, Pottinger PS, Jong EC, eds. The Travel and Tropical Medicine Manual. 5th ed. Elsevier; 2017:535-544.
  10. Centers for Disease Control and Prevention. Table 43. Chancroid--Reported Cases and Rates of Reported Cases by State/Territory in Alphabetical Order, United States, 2015-2019. https://www.cdc.gov/std/statistics/2019/tables/43.htm. Published April 12, 2022. Accessed July 29, 2022. 
  11. Workowski KA, Bachmann LH, Chan PA, et al. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm Rep 2021;70(4):1-187. doi: 10.15585/mmwr.rr7004a1. 
  12. de Voux A, Kent JB, Macomber K, et al. Notes from the field: cluster of lymphogranuloma venereum cases among men who have sex with men--Michigan, August 2015–April 2016. MMWR. 2016;65:920–921. doi:http://dx.doi.org/10.15585/mmwr.mm6534a6 
  13. Simms I, Ward H, Martin I, Alexander S, Ison C. Lymphogranuloma venereum in Australia. Sex Health. 2006;3(3):131-133. doi:10.1071/sh06039
  14. Hardick J, Quinn N, Eshelman S, et al. O3-S6.04 Multi-site screening for lymphogranuloma venereum (LGV) in the USA. Sex Transm Infect. 2011;87(Suppl 1):A82-A82. doi:10.1136/sex­trans-2011-050109.136
  15. Daniele D, Wilkerson T. Surveillance snapshot: donovanosis among active component service members, U.S. Armed Forces, 2011-2020. MSMR. 2021;28(12):22.
  16. Lopez A, Harrington T, Marin M. Chapter 22: Varicella. U.S. Department of Health and Hu­man Services. Epidemiology and Prevention of Vaccine-Preventable Diseases, 14th ed. https://www.cdc.gov/vaccines/pubs/pinkbook/varicella.html. Published September 20, 2021. Accessed September 3, 2022. 
  17. Williams VF, Stahlman S, Fan M. Measles, mumps, rubella, and varicella among service members and other beneficiaries of the Military Health System, 1 January 2016–30 June 2019. MSMR. 2019;26(10):2-12.
  18. Hall E, Wodi A P, Hamborsky J., et al., eds. Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. 14th ed. Washington, DC, Public Health Foundation, 2021.

TABLE. Differential Diagnosis of Genital Ulcers/Lesions

You also may be interested in...

Article
Apr 1, 2019

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of ...

Article
Apr 1, 2019

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine ...

Article
Apr 1, 2019

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke ...

Article
Apr 1, 2019

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to health care providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, ...

Article
Apr 1, 2019

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s ...

Article
Mar 1, 2019

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the ...

Article
Mar 1, 2019

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical ...

Article
Mar 1, 2019

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part ...

Article
Mar 1, 2019

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes ...

Article
Feb 1, 2019

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The ...

Article
Feb 1, 2019

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. ...

Article
Feb 1, 2019

Update: Malaria, U.S. Armed Forces, 2018

Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from ...

Article
Feb 1, 2019

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory ...

Article
Dec 1, 2018

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder ...

Article
Dec 1, 2018

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person ...

Skip subpage navigation
Refine your search
Last Updated: July 11, 2023
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on X Follow us on YouTube Sign up on GovDelivery