Integration of AI/ML into clinical workflows

Seth Schobel, Ph.D.
Assistant Professor, Dept. of Surgery and Scientific Director of SC2i

Disclaimer

USU-WRNMMC Surgery and HJF: The contents of this presentation are the sole responsibility of the author(s) and do not necessarily reflect the views, opinions or policies of Uniformed Services University of the Health Sciences (USUHS), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., the Department of Defense (DoD) or the Departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.
Overview of the Surgical Critical Care Initiative (SC2i)

FUNDING SOURCE STRUCTURE REPORTING

- Funded by DOD
- Launched in 2013 and designated as a USU Center in 2016
- A Federal / Non-Federal partnership
- Biannual Oversight Meetings

DUAL FOCUS

- Leveraging clinical and -omics data to develop 'precision' CDSTs in the acute care space
- Improving outcomes and lowering costs in both military and civilian systems

<table>
<thead>
<tr>
<th>CDSTs in development</th>
<th>Anticipated deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDEx/AIDEx</td>
<td>FY23</td>
</tr>
<tr>
<td>WoundEx™</td>
<td>FY24</td>
</tr>
<tr>
<td>VTE Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>Pneumonia Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>ARI Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>OA Dx</td>
<td>FY25</td>
</tr>
<tr>
<td>Bacteremia Dx</td>
<td>FY25</td>
</tr>
<tr>
<td>xMRI Dx</td>
<td>FY25</td>
</tr>
<tr>
<td>ID Dx</td>
<td>FY26</td>
</tr>
<tr>
<td>ARDS Dx</td>
<td>FY26</td>
</tr>
<tr>
<td>SBO Dx</td>
<td>FY26</td>
</tr>
</tbody>
</table>

SC2i clinical research supported by:
- 2,400 + patients enrolled
- 86 million data elements
- 14.6 million molecular assay measurements
- 88,000 + biobank specimens

SC2i research products include at least 11 in-development and 3 deployed CDSTs, including AIDEx 1.0, MTP, and IFI.

To efficiently utilize all of this information, the data must be in a common format

- In the process of converting our databases into a relational data in OMOP format
 - Large flat files are an inefficient way of storing data
 - Observational Medical Outcomes Partnership (OMOP) Common Data Model is a standardized way to structure data
 - Will allow for more easy integration of new datasets
- Developing a data lake for assay results
 - Will allow for the integration of new assay results into our datasets

OMOP Structure

OMOP

Data Lake

SPECIMEN
specimen_id
person_id
other columns
specimen_source_id

REQUEST
specimen

<instrument>_lab_qc
Instrument output columns

<instrument>_curated
curated instrument output columns
specimen_id
WounDx™ Purpose and Process

- WounDx™ is a device intended to assist surgeons in making decisions related to the timing of closure for traumatic extremity wounds
 - Following consultations with the FDA, this device classified as class II (moderate risk)

- WounDx™ is a combination product
 - Biomarkers (Cytokine Panel: IL-5, IL-7, IL-15, IL-17A, IL12/IL23p40, GMSCF)
 - Clinical factors (Wound size measurements, wound location, wound type)
 - Predictive algorithm

- Initial wound effluent samples collected upon enrollment + 12~24 hours prior to each debridement

- WounDx™ provides clinicians with a binary recommendation of whether the wound should be closed in the next 24 to 72 hour prior to next debridement
WoundDx Trial Study Design/Phases

- **Screening, enrollment:**
 - Randomization (blinding of CRT)

- **All wound surgeries:**
 - Samples, data and pictures (documentation and transfer)

- **Confirming wound closure:**
 - (30 days post closure)

Using multivariate data to predict sepsis occurrence

Proposed Schematic of Algorithm/Workflow

- Multivariate time series
- DV Partitioning
- Network representation
- EMR features
- SVM Classifier
- Septic?

Difference in network topology can be seen in control (blue) and pre-septic (red) patients

Shashikumar et al., 2018 Physiol Meas.
AIDEx in the MHS

- Artificial Intelligence Decompensation Expert (AIDEx) is a clinical decision support tool that identifies patients with sepsis on average 4-8 hours prior to clinician suspicion
 - Received DNA funding for integration at ten level 5 MTFs

- AIDEx is composed of two key components:
 1. A location & EHR agnostic pipeline
 - Interfaces with a health system’s EHR to provide the algorithm with real-time patient data; Provides clinicians with a user interface for interpreting the algorithm’s predictions
 2. A machine-learning based sepsis prediction algorithm

Limitations with AI/ML Modeling of Real World Data to predict hospital complications

- Machine Learning and Artificial Intelligence are being used for prediction of various complications including sepsis and multiple organ failure yet there are challenges to these approaches
 - Improving the actual predictive performance
 - Future robustness of models
 - One way to improve performance is generating more data for the selected features to train these models but the actual amount of data is limiting
 - Synthetic datasets could be used to aid in training of the models
 - Has been done previously in image recognition/generation and text analysis/recognition
 - Propose the need to generate synthetic multiplexed mediator time series data coincides with the advent of the concept of medical digital twins
 - Specifically related to interpretations of medical digits twins that hew closely to the original description and use of industrial digit twins
 - Involves generating multiple digital twins from a common computation model specification
Plans to create a Post-Burn Sepsis Digital Twin to augment the development of ML-models to predict sepsis and MODS

Overview of Arrangement of Organ Configuration

Circuit Diagram designed that incorporates organ/tissue systems of interest

Labeled Points of Interest on Circuit Diagram

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Myocardium</td>
<td>9</td>
<td>Shunt</td>
</tr>
<tr>
<td>2</td>
<td>Pericardium</td>
<td>10</td>
<td>Pulmonary Circulation</td>
</tr>
<tr>
<td>3</td>
<td>Vena Cava</td>
<td>11</td>
<td>Arteries</td>
</tr>
<tr>
<td>4</td>
<td>Bleeding</td>
<td>12</td>
<td>Capillaries</td>
</tr>
<tr>
<td>5</td>
<td>IV</td>
<td>13</td>
<td>Veins</td>
</tr>
<tr>
<td>6</td>
<td>Right Heart</td>
<td>14</td>
<td>Liver</td>
</tr>
<tr>
<td>7</td>
<td>Left Heart</td>
<td>15</td>
<td>Kidney</td>
</tr>
<tr>
<td>8</td>
<td>Aorta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SC2i’s innovations allow for the consortium to address complex questions in critical care using novel methods and infrastructure
Acknowledgements

The author and co-authors would like to acknowledge the contributions of all supporting the Surgical Critical Care Initiative (SC2i); it is through their dedication and hard work the Center is bringing precision medicine to the critically-ill.