

INFORMATION PAPER
ON
HYPERBARIC OXYGEN THERAPY AND TRAUMATIC BRAIN INJURY

RELEVANCE TO THE DEPARTMENT OF DEFENSE

As described in detail below, evidence from both military and civilian studies does not support using hyperbaric oxygen therapy to manage TBI. Studies on HBOT for TBI vary considerably in methodology, rigor, and sample population. DOD-sponsored studies of active duty service members with mild TBI history have collectively shown either 1) no significant differences in symptoms between those who underwent HBOT and those who completed a sham control treatment; or 2) improvements observed after HBOT diminish in the months after treatment ends.

PURPOSE

HBOT is considered an effective treatment for a variety of indications, but evidence regarding its efficacy for the treatment of TBI and post-concussion symptoms remains inconclusive. The purpose of this information paper is to summarize evidence from clinical studies investigating the use of HBOT for treatment of TBI and post-concussion symptoms.

Information is current as of March 2025 and may be subject to change as new findings become available.

BACKGROUND

HBOT is a treatment during which an individual breathes oxygen in a hyperbaric chamber to increase oxygen levels in the blood and tissues. The hyperbaric chamber's atmospheric pressure is greater than sea level pressure, which is 1 atmosphere absolute (ATA). For clinical purposes, according to The Undersea & Hyperbaric Medical Society, the procedure must involve near-100% oxygen and pressure of at least 1.4 ATA.¹ To date, the FDA has cleared both the oxygen and chambers used in HBOT to treat 13 medical disorders and conditions ([Table 1](#)).² However, HBOT is considered a first-line treatment for only two of these indications—decompression sickness and arterial gas embolism—and an adjunct to standard of care for the remaining indications.³ The FDA has not indicated or cleared HBOT for the treatment of TBI or post-concussion symptoms.⁴

Findings from over two decades of non-DOD funded preclinical studies suggest that HBOT protects the brain in several ways. Studies of rodent models of TBI have found that those treated with HBOT had much less activity in genes that cause cell death (a process known as apoptosis) than control animals. This difference was seen within a few days of the injury.^{5,6} Some studies have also shown more activity in anti-apoptosis genes and neurotrophic factors than control animals within seven days post injury, which may improve neuroplasticity.⁵ Other preclinical studies using rodent models of TBI have found that HBOT reduced neuron loss,^{6,9-11} inflammatory gene activity,⁷⁻¹⁰ and mitochondrial dysfunction.⁶ It also increased cerebral levels of ATP,¹¹ which can improve metabolic function in the brain, and reduced the number of astroglial cells, which promote neuroinflammation.^{6,8,9} Collectively, these findings suggest HBOT inhibits pathways contributing to neurologic damage, such as those involved in neuronal loss and glial scarring, while activating those that promote neurologic repair and regeneration.

These findings appear promising, but evidence regarding HBOT's effectiveness in treating TBI and post-concussion symptoms in humans remains inconclusive. However, based on anecdotal testimonies and case reports, some researchers and clinicians advocated for clearance to use HBOT for these indications.³ In response to these efforts, the DOD sponsored five randomized, prospective studies to evaluate the efficacy of HBOT among military service members with mild TBI ([Table 2](#)). Four of the trials consistently found that HBOT was no more effective than sham treatment for improving post-concussion symptoms in military personnel, leading to a 2018 memorandum from the Office of the Assistant Secretary of Defense for Health Affairs concluding that HBOT should not be prescribed for the treatment of persistent post-concussion symptoms.³ While the fifth study showed positive findings, it had notable limitations such as no sham-control group and a crossover-control design that prevented blinding of the participants and researchers to the allocated treatments.¹² Given the low quality and inconsistency of available scientific evidence, the [*2021 VA/DOD CPG for the Management and Rehabilitation of Post-Acute Mild Traumatic Brain Injury*](#) recommends against the use of HBOT for the treatment of patients with symptoms attributed to mild TBI.⁴

HYPERBARIC OXYGEN FOR TBI TREATMENT

Due to extensive media and research interest, studies investigating the use of HBOT for TBI and post-concussion symptoms have continued since the 2018 memorandum, showing conflicting results ([Table 3](#); [Table 4](#)). Some studies report significant positive effects, including improvements in pain intensity,^{13,14} cognitive function,¹⁵⁻¹⁹ levels of oxidative stress markers in blood,²⁰ and blood flow to the brain^{13-15,19,21,22} within days after HBOT treatment; however, these improvements generally decrease by later posttreatment timepoints in the few studies with 3- to 12-month follow-up.^{16,18,23} Additionally, the long-term follow-up of patients enrolled in previous DOD clinical studies, through 36 months posttreatment found no significant benefit of HBOT on post-concussion symptoms or TBI pathologies.²⁴⁻²⁸ One of these studies confirmed the safety of HBOT and the adequacy of subject blinding,²⁴ but another found no differences in global symptom scores immediately after HBOT.²⁵ A follow-up of a DOD-sponsored study demonstrated significant improvements in postural control immediately after HBOT in those with mild TBI and PTSD; however, these differences were not significant at the 6-month follow-up.²⁶ Similarly, other follow-up studies have revealed no long-term differences in eye tracking measures, white matter features, pain, or emotional symptoms at 6 to 36 months posttreatment, and minimal improvement in sleep.²⁷⁻³¹ Collectively, these studies indicate that any potential benefits of HBOT for TBI are likely transient.

The discrepancies in study findings are likely due to the heterogeneity of HBOT study designs^{32,33} and a lack of consensus on an appropriate control treatment (or sham) group.³⁴ Studies with more rigorous methodology, control conditions, and low potential for bias have not found significant cognitive or neurologic benefits from HBOT relative to sham treatment, consistent with the DOD-sponsored studies.³³ Most recent studies that do indicate a benefit of HBOT for post-concussion symptoms have considerable methodological concerns or have been conducted with non-negligible financial conflicts of interest or other potential sources of bias. Other common features of studies with low evidence strength that have reported benefits of HBOT include small sample sizes (N<50),^{14,15,18,20,21} a cohort or retrospective study design,^{14-21,23,35} and no appropriate control groups.^{12-23,35,36}

Notably, although the Undersea & Hyperbaric Medical Society indicates that clinical HBOT involves the use of at least 1.4 ATA pressure, HBOT proponents have raised concerns over the definition of a true sham condition. Many studies with a sham control use 1.2 ATA pressure, which is considered hyperbaric.³⁷ However, as evidence suggests that patients perceive a therapeutic effect merely from entering the HBOT chamber,^{38,39} it is important to incorporate a sham control to account for potentially confounding placebo effects.⁴⁰ Studies that compared HBOT treatment with both this sham control and a no-chamber control to address this concern have found no significant differences in TBI outcomes among these three groups.⁹⁻¹³ Most other studies conducted to date—including those showing positive HBOT effects—used only one of these control conditions (typically a no-treatment control). And unlike other studies of HBOT for approved indications, most studies of HBOT's effect on TBI to date were conducted at a single site, limiting generalizability to larger populations.⁴¹ The lack of consistency in HBOT regimens among different studies—such as the duration of treatment and number of sessions—also limits our ability to determine the precise effect of HBOT on TBI and post-concussion symptoms. Finally, evidence suggests that the effect of HBOT may depend on the severity of the TBI; studies of moderate-to-severe TBI tend to show more positive findings, but only a few such studies have been conducted since 2018.^{15,16,19,22,35,36}

Additional studies investigating the efficacy of HBOT for TBI and post-concussion symptoms are currently underway; however, most focus on severe TBI. One study anticipated to be completed in 2027 will investigate different HBOT regimens to determine an optimal HBOT course for patients with severe TBI.⁴² A retrospective study completed in February 2025 evaluated the efficacy of delayed HBOT intervention for severe TBI; however, the results were not publicly available at the time of this writing.⁴³ To assess potential companion biomarkers that could identify severe TBI patients who would benefit from HBOT, one study will measure molecular biomarkers of TBI and assess their ability to predict response to HBOT.⁴⁴ Finally, a study at the University of South Florida will investigate using HBOT to treat veterans with mild to moderate TBI. The study will assess whether HBOT reduces neurobehavioral and PTSD symptoms in these individuals and how many HBOT sessions are needed to see results.⁴⁵

CONCLUSION AND IMPACT TO THE WARFIGHTER

Studies on using HBOT for TBI or post-concussion symptoms exhibit widespread differences in methodological rigor and study design. However, those that were conducted using multiple control conditions and clearly defined outcome measures indicate that HBOT has limited beneficial effects in treating TBI or post-concussion symptoms.⁴⁶ Furthermore, both the FDA and the Undersea & Hyperbaric Medical Society have not changed their position on clearing HBOT for TBI or post-concussion symptoms. Also, HBOT is not covered through VA eligibility or TRICARE given the limited clinical findings and lack of FDA approval, as well as its high cost and lengthy treatment duration.^{4,47} Recommending a treatment with insufficient clinical evidence has considerable potential to lead to patient mistrust when expected clinical outcomes are not met. Collectively, available evidence does not support the use of HBOT as an off-label or evidence-based therapy for TBI or post-concussion symptoms in military service members or civilian populations.

Prepared by:
Clinical Translation Office
Traumatic Brain Injury Center of Excellence
dha.ncr.TBICoEResearch@health.mil

DISCLAIMER

The views expressed in this manuscript are those of the author and do not necessarily represent the official policy or position of the Defense Health Agency, Department of Defense, or any other U.S. government agency. This work was prepared under Contract HT0014-22-C-0016 with DHA Contracting Office (NM-CD) HT0014 and, therefore, is defined as U.S. Government work under Title 17 U.S.C. §101. Per Title 17 U.S.C. §105, copyright protection is not available for any work of the U.S. Government. For more information, please contact dha.TBICOEinfo@health.mil.

TABLES

Table 1: FDA Indications of Use for Hyperbaric Oxygen Therapy⁴⁸

- Air gas bubbles in blood vessels
- Anemia (severe anemia when blood transfusions cannot be used)
- Burns (severe and large burns treated at a specialized burn center)
- Carbon monoxide poisoning
- Crush injury
- Decompression sickness (diving risk)
- Gas gangrene
- Hearing loss (complete hearing loss that occurs suddenly and without any known cause)
- Infection of the skin and bone (severe)
- Radiation injury
- Skin graft flap at risk of tissue death
- Vision loss (when sudden and painless in one eye due to blockage of blood flow)
- Wounds (non-healing, diabetic foot ulcers)

Table 2: DOD-Sponsored Studies on HBOT for the Treatment of Post-Concussion Symptoms after Mild TBI among Active Duty Service Members

Study	Sample Size	Timepoint(s) for Outcome Assessment	HBOT Regimen	Control Group(s)	Key Findings
Air Force-Sponsored study ^{38,49,50}	N=50	Baseline, after every 5 exposures, 6 weeks	2.4 ATA (100% oxygen), 30 sessions	Sham treatment (1.3 ATA, room air)	<ul style="list-style-type: none"> • No major adverse effects; no significant differences in PTSD symptoms or cognitive function between groups • Both groups showed improvements after the study
Navy/Defense Advanced Research Projects Agency Study ⁵¹⁻⁵³	N=60	Baseline, 1 week	2.0 ATA (100% oxygen) or 1.5 ATA (100% oxygen), 60-minute sessions, 40 sessions total over 10 weeks	Sham treatment (room air), 60-minute sessions, 40 sessions total	<ul style="list-style-type: none"> • No significant benefits of either 1.5 ATA or 2.0 ATA HBOT treatment on measures of balance, fine motor speed, PTSD symptoms, post-concussion symptom questionnaires, or cognitive function relative to sham treatment
Army-Sponsored Hyperbaric Oxygen for Persistent Post-Concussive Symptoms after Mild Traumatic Brain Injury (HOPPS) Study ⁵⁴	N=72	Baseline, immediately posttreatment	1.5 ATA (100% oxygen), 60-minute sessions, 40 sessions total over 10 weeks	Sham treatment (1.2 ATA, room air, 40 sessions) or no HBOT (standard TBI care)	<ul style="list-style-type: none"> • No significant differences between the sham and HBOT groups on a post-concussion symptom questionnaire

Study	Sample Size	Timepoint(s) for Outcome Assessment	HBOT Regimen	Control Group(s)	Key Findings
Army-Sponsored Brain Injury and Mechanisms of Action of HBO ₂ for Persistent Post-Concussion Symptoms after Mild TBI (BIMA) Study ³¹	N=71	Baseline, 13 weeks, 6 months, 12 months	1.5 ATA (>99% oxygen), 60-minute sessions, 40 sessions total over 12 weeks	Sham treatment (1.2 ATA, room air, 60 minutes), 40 sessions total over 12 weeks	<ul style="list-style-type: none"> • HBOT associated with improvements in PTSD neurobehavioral symptoms, cognitive function, balance, sleep quality, immediately after treatment, but effects regressed at 6 months and 12 months
Army-Sponsored Louisiana State University study ¹²	N=60	Baseline, immediately posttreatment, 2 months	150 kilopascal (~1.5 ATA), 1-hour sessions once daily, 5 days per week for 8 weeks, 40 sessions total	No treatment	<ul style="list-style-type: none"> • Improvements in cognitive, sleep, mood, and PTSD symptoms observed immediately posttreatment and at 2 months

Table 3: Summary of Recent Studies Investigating Hyperbaric Oxygen Therapy for TBI Treatment—Follow-up to 2018 ASD Report

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Churchill et al., 2019; Meta-analysis of 2 randomized controlled trials (RCTs; HOPPS and BIMA) ²⁴	N=143	Active duty service members and veterans	Baseline, immediately posttreatment, 6 months, 12 months	<ul style="list-style-type: none"> • HOPPS: 1.5 ATA (>99% oxygen), 40 sessions over 10 weeks • BIMA: 1.5 ATA (>99% oxygen), 40 sessions over 12 weeks 	<ul style="list-style-type: none"> • HOPPS: No treatment or sham treatment (1.2 ATA, room air, 40 sessions) over 10 weeks • BIMA: sham treatment (1.2 ATA, room air, 40 sessions) over 12 weeks 	<ul style="list-style-type: none"> • Adverse event rates of 1.1% in HOPPS and 2.2% in BIMA • Adequate blinding (participants unable to accurately determine whether they received treatment or sham)
Weaver et al., 2019; Meta-analysis of 2 RCTs (HOPPS and BIMA) ²⁵	N=143	Active duty service members and veterans	Baseline, immediately posttreatment	<ul style="list-style-type: none"> • HOPPS: 1.5 ATA (>99% oxygen), 40 sessions over 10 weeks • BIMA: 1.5 ATA (>99% oxygen), 40 sessions over 12 weeks 	<ul style="list-style-type: none"> • HOPPS: No treatment or sham treatment (1.2 ATA, room air, 40 sessions) over 10 weeks • BIMA: sham treatment (1.2 ATA, room air, 40 sessions) over 12 weeks 	<ul style="list-style-type: none"> • No differences in composite symptom scores between sham and HBOT groups in either trial

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Meehan et al., 2019; Follow-up study of BIMA RCT ²⁶	N=146	Active duty service members and veterans	Baseline, immediately posttreatment, 6 months	1.5 ATA (>99% oxygen), 60 minutes, 40 sessions	No treatment or sham treatment (1.2 ATA air, 60 minutes), 40 sessions over 12 weeks	<ul style="list-style-type: none"> • No significant improvements in balance/postural control with HBOT at 6 months • Most benefits observed in those with concomitant PTSD
Hart et al., 2019; Follow-up study of BIMA RCT ³⁰	N=54	Active duty service members	Baseline, immediately posttreatment, 24 months, 36 months	1.5 ATA (>99% oxygen), 40 sessions over 12 weeks	Sham treatment (1.2 ATA room air, 60 minutes), 40 sessions over 12 weeks	<ul style="list-style-type: none"> • Improvements observed immediately posttreatment resolved by 6 months • No significant improvements in symptoms by 36 months
Wetzel et al, 2019; Follow-up study of BIMA RCT ²⁷	N=146	Active duty service members and veterans	Baseline, immediately posttreatment, 6 months	1.5 ATA (>99% oxygen), 40 sessions over 12 weeks	No treatment or sham treatment (1.2 ATA, room air, 40 sessions) over 12 weeks	<ul style="list-style-type: none"> • No significant differences immediately posttreatment or at 6 months
Cartwright et al., 2019; Prospective RCT ²⁸	N=146	Active duty service members and veterans and civilians	Baseline, immediately posttreatment, 6 months	1.5 ATA (>99% oxygen), 60-minute sessions, 40 sessions total over 13 weeks	No treatment or sham treatment (1.2 ATA, room air, 60-minute sessions) over 13 weeks	<ul style="list-style-type: none"> • No differences in white matter metabolite ratios between patients and controls or changes in these ratios over time
Walker et al., 2018; Follow-up study of BIMA RCT ²⁹	N=146	Active duty service members and veterans	Baseline, immediately posttreatment, 6 months	1.5 ATA, >99% oxygen, 60 minutes, 40 sessions over 12 weeks	Sham treatment (1.2 ATA), 40 sessions over 12 weeks	<ul style="list-style-type: none"> • Improvements in one sleep measure, no effect of HBOT on other measures

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Weaver et al., 2018; Follow-up study of BIMA RCT ³¹	N=71	Active duty service members	Baseline, immediately posttreatment, 6 months, 12 months	1.5 ATA, 60-minute sessions, 40 sessions total over 12 weeks	Sham treatment (1.2 ATA, room air, 40 sessions) over 12 weeks	<ul style="list-style-type: none">• Improvements in neurobehavioral and PTSD symptoms observed immediately posttreatment regressed at 6 and 12 months

Table 4: Summary of Recent Studies Investigating Hyperbaric Oxygen Therapy for TBI Treatment—Other Clinical Studies

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Doenyas-Barak et al., 2024; RCT sham controlled study ⁵⁵	N=56	Male veterans	Baseline; immediately posttreatment	2.0 ATA (100% O ₂), 90-min sessions, 60 daily sessions	1.02 ATA (21% O ₂), 90 min sessions, 60 daily sessions	<ul style="list-style-type: none"> • HBOT group showed a significant decrease in mean CAPS-5 total score • Sham group demonstrated a significant increase in CAPS-5 total score • Significant improvement in the depression domain of the DASS-21 and BDI-II • Stress and anxiety domains of DASS-21 did not differ
Ablin et al., 2023; RCT ¹³	N=58	Civilians	Baseline, immediately posttreatment	2.0 ATA (100% oxygen), 1x daily, 90-minute sessions, 5 sessions per week, 60 sessions total	No HBOT with standard medication for fibromyalgia syndrome	<ul style="list-style-type: none"> • Significant improvement in pain intensity and blood flow in HBOT group • All side effects resolved after treatment stopped
Miskin et al., 2023; Retrospective study ¹⁵	N=12	Civilians	Baseline, immediately posttreatment, 3 months	1.5 ATA (100% oxygen), 60 minutes, 5 sessions per week, 40 sessions total	None	<ul style="list-style-type: none"> • Improvements in cognitive function, increased cerebral blood flow and oxygen metabolism
Wright et al., 2023; RCT ⁵⁶	N=100	Civilians	Baseline, immediately posttreatment, 12 months	2.0 ATA (100% oxygen), 20 sessions	Sham treatment (20 sessions of 10.5% oxygen and 89.5% nitrogen at 2.0 ATA)	<ul style="list-style-type: none"> • Not published (in progress)

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Betsted et al., 2022; Case series ¹⁴	N=39	Veterans	Baseline, immediately posttreatment	1.5 ATMs (100% oxygen), twice daily 90-minute sessions for 20 days, 40 sessions total	None	<ul style="list-style-type: none"> • Significant improvement in blood flow to the brain • Improvement in pain, mood, and sleep symptoms
Chen et al., 2022; Cohort study ¹⁶	N=84	Civilians	Baseline, immediately posttreatment, 3 days, 10 days, 20 days, 6 months	2.0 ATA, 60-minute sessions, 20 treatments total	No treatment	<ul style="list-style-type: none"> • Improved consciousness and cognitive function 10 and 20 days after treatment • Reduced hematoma volume 3 and 10 days after treatment • Decreases in pathologic biomarker levels and increases in regenerative marker levels • No significant difference in 6 month outcome
Liu et al., 2022; RCT ³⁶	N=58	Civilians	Baseline, 1 week, 2 weeks, 4 weeks	1.8 to 2.0 megapascal (99.5% oxygen), once daily 60-minute sessions, 20 sessions total with transcranial magnetic stimulation	No HBOT with transcranial magnetic stimulation alone	<ul style="list-style-type: none"> • HBOT group woke from coma faster and at a higher rate • Improved Glasgow Coma Scale scores, and CNS function after HBOT • Increased CSF levels of norepinephrine and decreased blood flow velocity with HBOT
Duan et al., 2021; Cohort study ³⁵	N=78	Civilians	Baseline, 20 days	970 milliliter per liter oxygen + \leq 30 milliliter per liter CO ₂ , once daily 20-minute sessions, 10 days with standard medication	No HBOT with standard medication	<ul style="list-style-type: none"> • Increased P2 waveform extraction rate with HBOT • Differences in P2 latency after HBOT

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Lu et al., 2021; Multicenter prospective randomized case-controlled study ²³	N=158	Civilians	Baseline, immediately posttreatment, 3 months	3 courses of 2.0 ATA, 1-hour daily sessions for 20 days per course with routine or intensified rehabilitation	No HBOT with routine or intensified rehabilitation training	<ul style="list-style-type: none"> • No difference between routine rehabilitation and routine rehabilitation with HBOT at 3 months • Effect of HBOT dependent on intensity of rehabilitation training
Ma et al., 2021; Prospective cohort study ²¹	N=28	Firefighters	Baseline, immediately posttreatment	1.3 ATA (100% oxygen), 45-minute sessions, 5 sessions per week, 20 sessions total	No treatment	<ul style="list-style-type: none"> • Increased blood flow in and around the hippocampus
Wang et al., 2021; Cohort study ²⁰	N=10	Civilians	Baseline, immediately posttreatment	2.5 ATA (100% oxygen), 100 minute-sessions, 30 sessions total over 6 weeks	None	<ul style="list-style-type: none"> • Serum levels of some markers of oxidative stress decreased after HBOT treatment
Zhong et al., 2020; Randomized trial ²²	N=88	Civilians	Baseline, immediately posttreatment	0.20 MPa to 0.25MPa for 80 minutes, once daily for 2 weeks	No treatment	<ul style="list-style-type: none"> • Higher cerebral blood flow and oxygen uptake in treated group • Higher GCS scores and lower National Institutes of Health Stroke Scale scores in treated group
Mozayeni et al., 2019; Multicenter cohort study ¹⁷	N=32	Civilians and active duty service members and veterans	Baseline, immediately posttreatment	1.5 ATM (100% oxygen), 40 to 82 one-hour sessions	None	<ul style="list-style-type: none"> • Improvements in cognitive function and symptoms

Study	Sample Size	Population	Timepoints for Outcome Assessments	HBOT Regimen	Control group	Key Findings
Shytle et al., 2019; Case series ¹⁸	N=3	Civilians and active duty service members	Baseline, immediately posttreatment, 12 months	Case 1: 1.75 ATA, once daily, 5 days per week, 20 sessions total Case 2: 1.5 ATA twice daily, 5 days per week, 30 sessions total Case 3: 1.5 ATA twice daily, 5 days per week, 25 sessions total followed by 1.5 ATA once daily, 5 days per week, 10 sessions total	None	<ul style="list-style-type: none"> • Immediate improvements in symptoms, cognitive function and mood • Improvements resolved by the 1-year follow up
Hadanny et al., 2018; Retrospective cohort study ¹⁹	N=154	Civilians	Baseline, immediately posttreatment	1.5 or 2.0 ATA, once daily 60- or 90-minute sessions, 5 days per week, 40-70 sessions total	None	<ul style="list-style-type: none"> • Significant improvements in cognitive function; minor improvements in blood flow to the brain • More improvements in SPECT metrics in individuals with improved cognitive function

REFERENCES

1. Undersea & Hyperbaric Medical Society. UHMS guidelines for credentialing, privileging and supervision of hyperbaric oxygen therapy in the U.S.A. Available from: https://www.uhms.org/images/Position-Statements/UHMS_Cred_and_Priv_Guide_-_V30_Aug_2019.pdf
2. Fife CE, Eckert KA, Carter MJ. An update on the appropriate role for hyperbaric oxygen: Indications and evidence. *Plast Reconstr Surg.* 2016;138(3 Suppl):107s-116s. doi:10.1097/prs.0000000000002714
3. The Office of the Assistant Secretary of Defense for Health Affairs. Report in response to senate report 113-44, page 132-133, to accompany S. 1197, the National Defense Authorization Act of fiscal year 2014; hyperbaric oxygen therapy for mild traumatic brain injury. Available from: <https://health.mil/Reference-Center/Reports/2018/01/29/Hyperbaric-Oxygen-Therapy-for-Mild-Traumatic-Brain-Injury>
4. Department of Veterans Affairs & Department of Defense. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. Available from: <https://www.healthquality.va.gov/guidelines/rehab/mtbi/index.asp>
5. Xing P, Ma K, Li L, Wang D, Hu G, Long W. The protection effect and mechanism of hyperbaric oxygen therapy in rat brain with traumatic injury. *Acta Cir Bras.* 2018;33(4):341-353. doi:10.1590/s0102-865020180040000006
6. Sakas R, Dan K, Edelman D, et al. Hyperbaric oxygen therapy alleviates memory and motor impairments following traumatic brain injury via the modulation of mitochondrial-dysfunction-induced neuronal apoptosis in rats. *Antioxidants (Basel).* 2023;12(12). doi:10.3390/antiox12122034
7. Xiu G, Li X, Li Q, et al. Role of hyperbaric oxygen therapy in PDGF-BB-mediated astrogliosis in traumatic brain injury rats associated with ERK1/2 signaling pathway inhibition. *Eur J Med Res.* 2023;28(1):99. doi:10.1186/s40001-023-01062-1
8. Lavrnja I, Parabucki A, Brkic P, et al. Repetitive hyperbaric oxygenation attenuates reactive astrogliosis and suppresses expression of inflammatory mediators in the rat model of brain injury. *Mediators Inflamm.* 2015;2015:498405. doi:10.1155/2015/498405
9. Nyam TE, Wee HY, Chiu MH, et al. Hyperbaric oxygen therapy reduces the traumatic brain injury-mediated neuroinflammation through enrichment of prevotella copri in the gut of male rats. *Neurocrit Care.* 2024;41(3):798-812. doi:10.1007/s12028-024-01997-1
10. Vlodavsky E, Palzur E, Soustiel JF. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. *Neuropathol Appl Neurobiol.* 2006;32(1):40-50. doi:10.1111/j.1365-2990.2005.00698.x

11. Zhou Z, Daugherty WP, Sun D, et al. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. *J Neurosurg.* 2007;106(4):687-94. doi:10.3171/jns.2007.106.4.687
12. Harch PG, Andrews SR, Rowe CJ, et al. Hyperbaric oxygen therapy for mild traumatic brain injury persistent postconcussion syndrome: a randomized controlled trial. *Med Gas Res.* 2020;10(1):8-20. doi:10.4103/2045-9912.279978
13. Ablin JN, Lang E, Catalogna M, et al. Hyperbaric oxygen therapy compared to pharmacological intervention in fibromyalgia patients following traumatic brain injury: A randomized, controlled trial. *PLoS One.* 2023;18(3):e0282406. doi:10.1371/journal.pone.0282406
14. Bested A. A case series of 39 United States veterans with mild traumatic brain injury treated with hyperbaric oxygen therapy. *CTN.* 2022;6:1-14. doi:10.3390/ctn6030021
15. Miskin BM, Fox LA, Abou-Al-Shaar H, et al. Hyperbaric oxygen therapy for the management of mild and moderate traumatic brain injury: A single-center experience. *World Neurosurg.* 2023; 176:e357-e370. doi:10.1016/j.wneu.2023.05.062
16. Chen Y, Wang L, You W, et al. Hyperbaric oxygen therapy promotes consciousness, cognitive function, and prognosis recovery in patients following traumatic brain injury through various pathways. *Front Neurol.* 2022;13:929386. doi:10.3389/fneur.2022.929386
17. Mozayeni BR, Duncan W, Zant E, Love TL, Beckman RL, Stoller KP. The National Brain Injury Rescue and Rehabilitation Study: A multicenter observational study of hyperbaric oxygen for mild traumatic brain injury with post-concussive symptoms. *Med Gas Res.* 2019;9(1):1-12. doi:10.4103/2045-9912.254636
18. Shytle RD, Eve DJ, Kim SH, Spiegel A, Sanberg PR, Borlongan CV. Retrospective case series of traumatic brain injury and post-traumatic stress disorder treated with hyperbaric oxygen therapy. *Cell Transplant.* 2019;28(7):885-892. doi:10.1177/0963689719853232
19. Hadanny A, Abbott S, Suzin G, Bechor Y, Efrati S. Effect of hyperbaric oxygen therapy on chronic neurocognitive deficits of post-traumatic brain injury patients: Retrospective analysis. *BMJ Open.* 2018;8(9):e023387. doi:10.1136/bmjopen-2018-023387
20. Wang HC, Wang PM, Lin YT, et al. Effects of hyperbaric oxygen therapy on serum adhesion molecules, and serum oxidative stress in patients with acute traumatic brain injury. *J Pers Med.* 2021;11(10). doi:10.3390/jpm11100985
21. Ma J, Hong G, Ha E, et al. Hippocampal cerebral blood flow increased following low-pressure hyperbaric oxygenation in firefighters with mild traumatic brain injury and emotional distress. *Neurol Sci.* 2021;42(10):4131-4138. doi:10.1007/s10072-021-05094-5
22. Zhong X, Shan A, Xu J, Liang J, Long Y, Du B. Hyperbaric oxygen for severe traumatic brain injury: A randomized trial. *J Int Med Res.* 2020;48(10):300060520939824. doi:10.1177/0300060520939824

23. Lu Y, Zhou X, Cheng J, Ma Q. Early intensified rehabilitation training with hyperbaric oxygen therapy improves functional disorders and prognosis of patients with traumatic brain injury. *Adv Wound Care (New Rochelle)*. 2021;10(12):663-670. doi:10.1089/wound.2018.0876
24. Churchill S, Deru K, Weaver LK, et al. Adverse events and blinding in two randomized trials of hyperbaric oxygen for persistent post-concussive symptoms. *Undersea Hyperb Med*. 2019;46(3):331-340.
25. Weaver LK, Churchill S, Wilson SH, Hebert D, Deru K, Lindblad AS. A composite outcome for mild traumatic brain injury in trials of hyperbaric oxygen. *Undersea Hyperb Med*. 2019;46(3):341-352.
26. Meehan A, Hebert D, Deru K, Weaver LK. Longitudinal study of hyperbaric oxygen intervention on balance and affective symptoms in military service members with persistent post-concussive symptoms. *J Vestib Res*. 2019;29(4):205-219. doi:10.3233/ves-180671
27. Wetzel PA, Lindblad AS, Mulatya C, et al. Eye tracker outcomes in a randomized trial of 40 sessions of hyperbaric oxygen or sham in participants with persistent post concussive symptoms. *Undersea Hyperb Med*. 2019;46(3):299-311.
28. Cartwright PE, Perkins TG, Wilson SH, Weaver LK, Orrison WW. Analysis of magnetic resonance spectroscopy relative metabolite ratios in mild traumatic brain injury and normative controls. *Undersea Hyperb Med*. 2019;46(3):291-297.
29. Walker JM, Mulatya C, Hebert D, Wilson SH, Lindblad AS, Weaver LK. Sleep assessment in a randomized trial of hyperbaric oxygen in U.S. service members with post concussive mild traumatic brain injury compared to normal controls. *Sleep Med*. 2018;51:66-79. doi:10.1016/j.sleep.2018.06.006
30. Hart BB, Wilson SH, Churchill S, et al. Extended follow-up in a randomized trial of hyperbaric oxygen for persistent post-concussive symptoms. *Undersea Hyperb Med*. 2019;46(3):313-327.
31. Weaver LK, Wilson SH, Lindblad AS, et al. Hyperbaric oxygen for post-concussive symptoms in United States military service members: A randomized clinical trial. *Undersea Hyperb Med*. 2018;45(2):129-156.
32. Biggs AT, Littlejohn LF. Looking for more than hot air: How experimental design can enhance clinical evidence for hyperbaric oxygen therapy. *Med Gas Res*. 2022;12(4):116-124. doi:10.4103/2045-9912.337992
33. Biggs AT, Littlejohn LF, Dainer HM. Alternative uses of hyperbaric oxygen therapy in military medicine: Current positions and future directions. *Mil Med*. 2022;187(1-2):e40-e46. doi:10.1093/milmed/usab022
34. Figueroa XA, Wright JK. Hyperbaric oxygen: B-level evidence in mild traumatic brain injury clinical trials. *Neurology*. 2016;87(13):1400-6. doi:10.1212/wnl.0000000000003146

35. Duan L, Wang C, Wang X, et al. Evaluation of the hyperbaric oxygen therapy on the flash visual evoked potential P2 in patients with severe traumatic brain injury. *NeuroRehabilitation*. 2022;50(1):101-104. doi:10.3233/nre-210165
36. Liu M, Li Q, Bao Y, Ma Y, Niu Y, Zhang F. Effect of low frequency repetitive transcranial magnetic stimulation (rTMS) combined with hyperbaric oxygen (HBO) on awakening of coma patients with traumatic brain injury. *J Healthc Eng*. 2022;2022:6133626. doi:10.1155/2022/6133626
37. Harch PG. Hyperbaric oxygen therapy for post-concussion syndrome: Contradictory conclusions from a study mischaracterized as sham-controlled. *J Neurotrauma*. 2013;30(23):1995-9. doi:10.1089/neu.2012.2799
38. Wolf EG, Baugh LM, Kabban CM, Richards MF, Prye J. Cognitive function in a traumatic brain injury hyperbaric oxygen randomized trial. *Undersea Hyperb Med*. 2015;42(4):313-32.
39. Bennett MH. Hyperbaric medicine and the placebo effect. *Diving Hyperb Med*. 2014;44(4):235-40.
40. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. *N Engl J Med*. 2002;347(14):1057-67. doi:10.1056/NEJMoa013121
41. Leach RM, Rees PJ, Wilmshurst P. Hyperbaric oxygen therapy. *BMJ*. 1998;317(7166):1140-3. doi:10.1136/bmj.317.7166.1140
42. ClinicalTrials.gov. Hyperbaric oxygen brain injury treatment trial (HOBIT). Updated 2024. Available from: <https://clinicaltrials.gov/study/NCT02407028?cond=Traumatic%20brain%20injury%20&intr=Hyperbaric%20Oxygen%20Therapy&rank=7>
43. ClinicalTrials.gov. The effects of hyperbaric oxygen on non-acute traumatic brain injury. Updated 2025. Available from: <https://clinicaltrials.gov/study/NCT05387018?cond=Traumatic%20brain%20injury%20&intr=Hyperbaric%20Oxygen%20Therapy&page=2&rank=15>
44. ClinicalTrials.gov. The biomarkers in the hyperbaric oxygen brain injury treatment trial (BIOHOBIT). Updated 2025. Available from: <https://clinicaltrials.gov/study/NCT04855396?cond=Traumatic%20brain%20injury%20&intr=Hyperbaric%20Oxygen%20Therapy&page=2&rank=16>
45. ClinicalTrials.gov. Hyperbaric oxygen treatment for veterans with traumatic brain injury. Updated 2025. Available from: <https://clinicaltrials.gov/study/NCT06581003?cond=TBI-Traumatic%20Brain%20Injury&intr=Hyperbaric%20Oxygen%20Therapy&page=2&rank=15>
46. Alashram AR, Padua E, Romagnoli C, Annino G. Hyperbaric oxygen therapy for cognitive impairments in patients with traumatic brain injury: A systematic review. *Appl Neuropsychol Adult*. 2023;30(5):602-613. doi:10.1080/23279095.2022.2041418

47. Gelly HB, Fife CE, Walker D, Eckert KA. Trends in Medicare costs of hyperbaric oxygen therapy, 2013 through 2022. *Undersea Hyperb Med*. 2024;51(2):137-144.
48. Undersea & Hyperbaric Medical Society. Indications for hyperbaric oxygen therapy 2023. Available from: <https://www.uhms.org/resources/hbo-indications.html>
49. Wolf G, Cifu D, Baugh L, Carne W, Profenna L. The effect of hyperbaric oxygen on symptoms after mild traumatic brain injury. *J Neurotrauma*. 2012;29(17):2606-12. doi:10.1089/neu.2012.2549
50. Wolf EG, Prye J, Michaelson R, Brower G, Profenna L, Boneta O. Hyperbaric side effects in a traumatic brain injury randomized clinical trial. *Undersea Hyperb Med*. 2012;39(6):1075-82.
51. Walker WC, Franke LM, Cifu DX, Hart BB. Randomized, sham-controlled, feasibility trial of hyperbaric oxygen for service members With postconcussion syndrome: Cognitive and psychomotor outcomes one week postintervention. *Neurorehabil Neural Repair*. 2014;28(5):420-32. doi:10.1177/1545968313516869
52. Cifu DX, Hart BB, West SL, Walker W, Carne W. The effect of hyperbaric oxygen on persistent postconcussion symptoms. *J Head Trauma Rehabil*. 2014;29(1):11-20. doi:10.1097/HTR.0b013e3182a6aaf0
53. Cifu DX, Walker WC, West SL, et al. Hyperbaric oxygen for blast-related postconcussion syndrome: Three-month outcomes. *Ann Neurol*. 2014;75(2):277-86. doi:10.1002/ana.24067
54. Miller RS, Weaver LK, Bahraini N, et al. Effects of hyperbaric oxygen on symptoms and quality of life among service members with persistent postconcussion symptoms: a randomized clinical trial. *JAMA Intern Med*. 2015;175(1):43-52. doi:10.1001/jamainternmed.2014.5479
55. Doenias-Barak K, Kutz I, Lang E, et al. Hyperbaric oxygen therapy for veterans with combat-associated posttraumatic stress disorder: A randomized, sham-controlled clinical trial. *J Clin Psychiatry*. 2024;85(4). doi:10.4088/JCP.24m15464
56. Wright B, Guilliod R, Thakur B, et al. Hyperbaric Oxygen Therapy versus placebo for post-concussion syndrome (HOT-POCS): A randomized, double-blinded controlled pilot study. *Contemp Clin Trials Commun*. 2023;34:101176. doi:10.1016/j.conc.2023.101176