DoD Influenza Surveillance and Mid-Season Vaccine Effectiveness

Mark Scheckelhoff, PhD, MPH**

**Representing the DoD CONUS and OCONUS lab-based influenza surveillance activities

Presentation to the Vaccines and Related Biological Products Advisory Committee (VRBPAC) – 4 March 2020

“Medically Ready Force...Ready Medical Force”
Purpose: Provide a concise update to the VRBPAC on DoD influenza surveillance activities for 2018-2019

1. Program Description
2. Strain Circulation
3. Molecular Analyses
4. Vaccine Effectiveness
Breadth of DoD Influenza Surveillance

• Global Influenza Surveillance
 – Approximately 400 locations in over 30 countries
 • Military; Local government/academic
 – Extensive characterization capabilities within the DoD
 • Culture, PCR, Sequencing, Serology
 – Rapid sharing of results with CDC and/or regional WHO reference centers
 • Yearly average: ~30,000 samples collected and analyzed each year

• Comprehensive Epidemiology and Analysis Capabilities
 – 1.4 Million Active Duty records (health care utilization, immunizations, deployment, reportable diseases, etc.)
 • Produce Medical Surveillance Monthly Reports, Ad-hoc requests, Studies/analyses,
 • Weekly influenza reports
 • Vaccine safety and effectiveness studies

“Medically Ready Force...Ready Medical Force”
GEIS-Supported Influenza Surveillance Footprint

“Medically Ready Force... Ready Medical Force”
Submitting Countries and Subtype Circulation 2019-2020 Season

“Medically Ready Force...Ready Medical Force”
Subtype Circulation: North America
Number and Proportion of Specimens Positive for Influenza by Subtype

Sources: NHRC, USAFSAM

Sources: WHO GISRS
Subtype Circulation: South America

Number and Proportion of Specimens Positive for Influenza by Subtype

Source: NAMRU-6

Source: WHO GISRS
Subtype Circulation: Europe

Number and Proportion of Specimens Positive for Influenza by Subtype

Sources: LRMC/PHCE, USAFSAM

Number of Specimens

A(H1N1) A(H3N2) A(Not subtyped) B A+B % Positive

Percent Positive

Number of Specimens

A(H1N1) A(H3N2) A(Not subtyped) B A+B % Positive

Source: WHO GISRS
Subtype Circulation: Middle East

Number and Proportion of Specimens Positive for Influenza by Subtype

Sources: LRMC/PHCE, USAFSAM, NAMRU-3

Sources:

WHO GISRS
Subtype Circulation: East Africa

Number and Proportion of Specimens Positive for Influenza by Subtype

Source: USAMRD-K

Source: WHO GISRS
Subtype Circulation: West Africa (Ghana)

Number and Proportion of Specimens Positive for Influenza by Subtype

Source: NAMRU-3

Source: WHO GISRS

Number and Proportion of Specimens Positive for Influenza by Subtype

- **A(H1N1)**
- **A(H3N2)**
- **A(Not subtyped)**
- **B**
- **A+B**

Source: NAMRU-3

Source: WHO GISRS
Subtype Circulation: Asia

Number and Proportion of Specimens Positive for Influenza by Subtype

Sources: 65th MED BDE, AFRIMS, NAMRU-2, NHRC, USAFSAM

Source: WHO GISRS
Summary of Circulating Subtype 2019-2020 Season

• In North America DoD surveillance is similar to national trends with a predominance of Influenza B; in recent surveillance A(H1N1) predominates

• Activity during the season in South America showed a predominance of Influenza B*

• Activity in Europe shows A(H1N1) predominating

• Asia data show early predominance of A(H3N2) with recent predominance of A(H1N1)*

• In the Middle East A(H1N1) predominates

• East Africa data show nearly evenly mixed predominance of influenza B with recent predominance of A(H3N2)*

• Activity in West Africa shows A(H3N2) predominating

*Most data from tropics
DoD / USAFSAM Phylogenetic Analysis
2019-2020 Influenza Season
Medically Ready Force…Ready Medical Force

Contributors
- USAFSAM Sentinel Sites (1752)
- Deployed Locations (5)
- AFRIMS (64)
- NAMRU-2 (7)
- NHRC (93)
- USAMRD-K (14)
- Hospitalized Cases (34)

Countries
- Cambodia
- Country 1
- England
- Germany
- Italy
- Japan
- Kenya
- Mexico
- Philippines
- South Korea
- Spain
- Thailand
- United States
- Guam

Total = 1935
769 influenza A(H1N1)pdm09 specimens sequenced
All clade 6B.1A with 183P substitution, with 76.5% in subgroup 5A, 16.4% in subgroup 5B, and 7.1% in subgroup 7
15 A(H1N1)pdm09 specimens collected from hospitalized patients, with 13 (86.7%) in subgroup 5A, and 1 each in groups 5B and 7
Among 6B.1A5A viruses, 91.1% had D187A and Q189E, and 23.9% had K130N
Among 6B.1A5B viruses, 45.6% had P137S
A(H1N1)pdm09 HA Clades
Sep 2019-Jan 2020

Number of A(H1N1)pdm09 Specimens

“Medically Ready Force…Ready Medical Force”
Influenza A(H3N2)

- 158 influenza A(H3N2) specimens sequenced
- 94.3% in clade 3C.2a1b and 5.7% in clade 3C.3a
- 73.0% of the 3C.2a1b viruses had the substitution T131K (same as 2020 SH vaccine strain A(South Australia/34/2019) and 44.9% had Q197R
A(H3N2) HA Clades
Oct 2017-Jan 2020

Number of A(H3N2) Specimens

3C.2a1a 3C.2a1b 3C.2a2 3C.2a3 "Other" 3C.2a 3C.3a (V)

"Medically Ready Force...Ready Medical Force"
998 influenza B/Victoria specimens sequenced
96.6% in clade V1A.3 (3-del) and 3.4% in clade V1A.1 (2-del)
19 collected from hospitalized patients, with 18 (94.7%) in clade V1A.3 and 1 in V1A.1
Nearly all V1A.3 viruses had G133R (98.9%) and K136E (99.9%), and 49.1% had E128K
Additionally, 10 influenza B/Yamagata specimens were collected and all were clade Y3 (data not shown)
B/Victoria HA Clades
Oct 2017-Jan 2020

“Medically Ready Force...Ready Medical Force”
Surface Protein Similarity

% HA Amino Acid Similarity

% NA Amino Acid Similarity

Sep-19 Oct-19 Nov-19 Dec-19 Jan-20

A(H1N1)pdm09 A(H3N2) B/Vic B/Yam

"Medically Ready Force...Ready Medical Force"
"Medically Ready Force...Ready Medical Force"
Microneutralization Titers for Influenza Virus A (H1N1) samples

<table>
<thead>
<tr>
<th>Reference Virus</th>
<th>Reference Antiserum</th>
<th>A/Brisbane/2/2018</th>
<th>A/Michigan/45/2015</th>
<th>A/California/7/2009</th>
<th>Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Brisbane/2/2018</td>
<td>20480</td>
<td>10240</td>
<td>5120</td>
<td>Egg</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Michigan/45/2015</td>
<td>20480</td>
<td>10240</td>
<td>5120</td>
<td>Egg</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/California/7/2009</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>Egg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Antigen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Georgia/10013/2019</td>
<td>3620</td>
<td>2560</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Washington/9902/2019</td>
<td>2560</td>
<td>1280</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Colorado/9862/2019</td>
<td>2560</td>
<td>1280</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Alabama/9860/2019</td>
<td>5120</td>
<td>2560</td>
<td>1280</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Japan/10014/2019</td>
<td>3620</td>
<td>1280</td>
<td>320</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Ohio/9894/2019</td>
<td>5120</td>
<td>2560</td>
<td>320</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Guam/9874/2019</td>
<td>5120</td>
<td>2560</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Georgia/9866/2019</td>
<td>3620</td>
<td>1280</td>
<td>320</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Delaware/9864/2019</td>
<td>5120</td>
<td>2560</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Virginia/9900/2019</td>
<td>1810</td>
<td>1280</td>
<td>320</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Texas/9896/2019</td>
<td>2560</td>
<td>1810</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Nevada/9885/2019</td>
<td>5120</td>
<td>2560</td>
<td>905</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>A/Alabama/9860/2019</td>
<td>2560</td>
<td>2560</td>
<td>453</td>
<td>SIAT1</td>
</tr>
</tbody>
</table>
Microneutralization Titers for Influenza Virus A (H3N2) samples

<table>
<thead>
<tr>
<th>Reference Virus</th>
<th>A/Kanasas/14/2017</th>
<th>A/Singapore/INIMF-16-0019/2016</th>
<th>A/Hong Kong/4801/2014</th>
<th>Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/Kanasas/14/2017</td>
<td>1280</td>
<td>160</td>
<td>1280</td>
<td>Egg</td>
</tr>
<tr>
<td>A/Singapore/INIMF-16-0019/2016</td>
<td>5120</td>
<td>10240</td>
<td>10240</td>
<td>Egg</td>
</tr>
<tr>
<td>A/Hong Kong/4801/2014</td>
<td>5120</td>
<td>7241</td>
<td>10240</td>
<td>Egg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test antigens</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A(H3N2) A/Nevada/10019/2019</td>
<td>320</td>
<td>160</td>
<td><160</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Japan/9879/2019</td>
<td>640</td>
<td>320</td>
<td>320</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Virginia/9898/2019</td>
<td>452</td>
<td>320</td>
<td>160</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/England/9865/2019</td>
<td>1810</td>
<td>905</td>
<td>905</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Maryland/9883/2019</td>
<td>226</td>
<td>160</td>
<td><160</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Virginia/9899/2019</td>
<td>640</td>
<td>320</td>
<td>640</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Ohio/9893/2019</td>
<td>160</td>
<td><160</td>
<td><160</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Colorado/10011/2019</td>
<td>320</td>
<td>160</td>
<td>160</td>
<td>PMK</td>
</tr>
<tr>
<td>A(H3N2) A/Washington/9903/2019</td>
<td>320</td>
<td>320</td>
<td>160</td>
<td>SIAT1</td>
</tr>
</tbody>
</table>
Microneutralization Titers for Influenza Virus B samples

<table>
<thead>
<tr>
<th>Reference Antiserum</th>
<th>B/Colorado/06/2017</th>
<th>B/Phukett/3073/2013</th>
<th>Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Virus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Colorado/06/2017</td>
<td>2560</td>
<td>40</td>
</tr>
<tr>
<td>B/Yam</td>
<td>B/Phukett/3073/2013</td>
<td>80</td>
<td>1280</td>
</tr>
<tr>
<td>Test Antigens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Georgia/9912/2019</td>
<td>3620</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Kentucky/9915/2019</td>
<td>3620</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Kentucky/9914/2019</td>
<td>2560</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Kentucky/9917/2019</td>
<td>1280</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Washington/10133/2019</td>
<td>3620</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Texas/10099/2019</td>
<td>3620</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Texas/10098/2019</td>
<td>2560</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Nevada/10096/2019</td>
<td>2560</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Italy/9913/2019</td>
<td>3620</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Virginia/10132/2019</td>
<td>1280</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Texas/10100/2019</td>
<td>640</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/South Carolina/10097/2019</td>
<td>1810</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Kentucky/10040/2019</td>
<td>905</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Colorado/10036/2019</td>
<td>2560</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Arizona/10034/2019</td>
<td>1810</td>
<td><40</td>
</tr>
<tr>
<td>B/Yam</td>
<td>B/Nevada/9922/2019</td>
<td><40</td>
<td>2560</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Washington/10133/2019</td>
<td>640</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Colorado/10036/2019</td>
<td>320</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Florida/10037/2019</td>
<td>453</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Washington/10009/2019</td>
<td>905</td>
<td><40</td>
</tr>
<tr>
<td>B/Vic</td>
<td>B/Washington/10010/2019</td>
<td>640</td>
<td><40</td>
</tr>
</tbody>
</table>
Antigenic Characterization Summary

Antigenically similar to NH 2019-20 vaccine*

Antigenically Low to NH 2019-20 vaccine*

*Against reference viruses representing NH 2019-20 vaccine component:
- A(H1N1)pdm09 - A/Brisbane/02/2018
- A(H3N2) – A/Kansas/14/2017
- B/Yam - B/Phuket/3073/2013
- B/Vic – B/Colorado/06/2017

```
Antigenically similar to NH 2019-20 vaccine

Antigenically Low to NH 2019-20 vaccine
```

```
<table>
<thead>
<tr>
<th>Virus</th>
<th>Antigenic Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1N1pdm09</td>
<td>≈ 100</td>
</tr>
<tr>
<td>H3N2</td>
<td>≈ 90</td>
</tr>
<tr>
<td>B Victoria</td>
<td>≈ 80</td>
</tr>
<tr>
<td>B Yamagata</td>
<td>≈ 70</td>
</tr>
</tbody>
</table>
```
Midseason
Vaccine Effectiveness (VE) Estimates
VE Preview

• Mid-year estimates provided by:
 – AFHSB AF Satellite - US Air Force School of Aerospace Medicine (USAFSAM)
 – Naval Health Research Center (NHRC)
 – AFHSB Epidemiology and Analysis Section

• Case test-negative control studies used to estimate VE
 – All studies used case test-negative control method
 – Each influenza infection from USAFSAM and NHRC was confirmed by RT-PCR or viral culture; AFHSB also used positive rapid tests (but excluded rapid test negatives)
 – Analyses performed for influenza types and subtypes

“Medically Ready Force...Ready Medical Force”
AFHSB Air Force Satellite / USAFSAM Analyses

“Medically Ready Force...Ready Medical Force”
DoD Beneficiaries & U.S.-Mexico Border Civilians

- **Adjusted Estimates of Vaccine Effectiveness**
 - Population: DoD healthcare beneficiaries (excluding Service Members) and civilian populations at clinics near the U.S.–Mexico border (Border Infectious Disease Surveillance; BIDS)
 - Time period: November 3, 2019 – February 15, 2020 (Weeks 45-07)

<table>
<thead>
<tr>
<th>Analysis by influenza type/subtype</th>
<th>Analysis by population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>Overall</td>
</tr>
<tr>
<td>B</td>
<td>Children</td>
</tr>
<tr>
<td>A (any influenza A specimen)</td>
<td>Adults</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td></td>
</tr>
<tr>
<td>A(H3N2)</td>
<td></td>
</tr>
</tbody>
</table>

- Insufficient data for a 65+ age group & adult A(H3N2) analysis
- Adjusted for age group, time of specimen collection, location, and gender

"Medically Ready Force...Ready Medical Force"
DoD Beneficiaries & U.S.-Mexico Border Civilians

- **Laboratories Contributing Specimens for VE Analysis (n=3,745)**
 - US Air Force School of Aerospace Medicine (USAFSAM) n = 3,375
 - Landstuhl Regional Medical Center (LRMC) n = 234
 - Naval Health Research Center (NHRC) n= 136

- **Adjusted Estimates of Vaccine Effectiveness**
 - Cases: n =1,595; confirmed by RT-PCR or viral culture
 - Controls: n=2,150; test-negative
 - Vaccination rates: cases 43%, controls 57%

- Of total cases:
 - 23% were influenza B
 - 18% were influenza A(H1N1)pdm09
 - 2% were influenza A (H3N2)
 - 0.1% were influenza A/Not Subtyped

"Medically Ready Force...Ready Medical Force"
Characteristics of Cases and Controls (n=3,745)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cases (n=1,595) No. (%)</th>
<th>Controls (n=2,150) No. (%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>715 (44.83)</td>
<td>828 (38.51)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>880 (55.17)</td>
<td>1,322 (61.49)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-8</td>
<td>624 (39.12)</td>
<td>747 (34.74)</td>
<td><0.0001</td>
</tr>
<tr>
<td>9-17</td>
<td>423 (26.52)</td>
<td>378 (17.58)</td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>334 (20.94)</td>
<td>584 (27.16)</td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td>168 (10.53)</td>
<td>274 (12.74)</td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>46 (2.88)</td>
<td>167 (7.77)</td>
<td></td>
</tr>
<tr>
<td>Month of illness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>139 (8.71)</td>
<td>447 (20.79)</td>
<td><0.0001</td>
</tr>
<tr>
<td>December</td>
<td>375 (23.51)</td>
<td>643 (29.91)</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>732 (45.89)</td>
<td>732 (34.05)</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>349 (21.88)</td>
<td>328 (15.26)</td>
<td></td>
</tr>
<tr>
<td>Geographic Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern CONUS</td>
<td>595 (37.30)</td>
<td>750 (34.88)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Western CONUS</td>
<td>769 (48.21)</td>
<td>918 (42.70)</td>
<td></td>
</tr>
<tr>
<td>OCONUS</td>
<td>231 (14.48)</td>
<td>482 (22.42)</td>
<td></td>
</tr>
<tr>
<td>Surveillance Hub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRMC</td>
<td>56 (3.51)</td>
<td>178 (8.28)</td>
<td><0.0001</td>
</tr>
<tr>
<td>NHRC</td>
<td>52 (3.26)</td>
<td>84 (3.91)</td>
<td></td>
</tr>
<tr>
<td>USAFSAM</td>
<td>1,487 (93.23)</td>
<td>1,888 (87.81)</td>
<td></td>
</tr>
<tr>
<td>Vaccination Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinated</td>
<td>690 (43.26)</td>
<td>1,205 (56.05)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>905 (56.74)</td>
<td>945 (43.95)</td>
<td></td>
</tr>
<tr>
<td>Flu</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>B</td>
<td>845 (52.98)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>680 (42.63)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>66 (4.14)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>A/Not Subtyped</td>
<td>4 (0.25)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Not Flu</td>
<td>0 (0)</td>
<td>2150 (100)</td>
<td></td>
</tr>
</tbody>
</table>

CONUS=Continental United States; OCONUS=Outside Continental United States; LRMC=Landstuhl Regional Medical Center; NHRC=Naval Health Research Center; USAFSAM=United States Air Force School of Aerospace Medicine
Summary of DoD Dependents and U.S.-Mexico Border VE Results

“Medically Ready Force...Ready Medical Force”
Adjusted VE Estimates 2019-2020

<table>
<thead>
<tr>
<th>Type</th>
<th>Population</th>
<th>Vaccine Status</th>
<th>Cases (%)</th>
<th>Controls (%)</th>
<th>Crude VE (95% CI)</th>
<th>Adjusted VE* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>All Dependents</td>
<td>Vaccinated</td>
<td>690 (18)</td>
<td>1205 (32)</td>
<td>40 (32, 48)</td>
<td>54 (46, 60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>905 (24)</td>
<td>945 (25)</td>
<td>39 (28, 49)</td>
<td>47 (35, 56)</td>
</tr>
<tr>
<td></td>
<td>Children (2-17 yrs)</td>
<td>Vaccinated</td>
<td>459 (21)</td>
<td>632 (29)</td>
<td>39 (28, 49)</td>
<td>47 (35, 56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>588 (27)</td>
<td>493 (23)</td>
<td>42 (29, 53)</td>
<td>48 (35, 59)</td>
</tr>
<tr>
<td></td>
<td>Adults (≥18)</td>
<td>Vaccinated</td>
<td>228 (15)</td>
<td>564 (36)</td>
<td>51 (43, 59)</td>
<td>51 (41, 59)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>317 (20)</td>
<td>452 (29)</td>
<td>56 (39, 68)</td>
<td>52 (31, 67)</td>
</tr>
<tr>
<td>B</td>
<td>All Dependents</td>
<td>Vaccinated</td>
<td>323 (11)</td>
<td>1205 (40)</td>
<td>25 (11, 36)</td>
<td>45 (33, 54)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>522 (17)</td>
<td>945 (32)</td>
<td>34 (16, 48)</td>
<td>55 (42, 66)</td>
</tr>
<tr>
<td></td>
<td>Children (2-17 yrs)</td>
<td>Vaccinated</td>
<td>255 (14)</td>
<td>632 (35)</td>
<td>51 (40, 59)</td>
<td>54 (43, 63)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>402 (23)</td>
<td>493 (28)</td>
<td>38 (20, 52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adults (≥18)</td>
<td>Vaccinated</td>
<td>66 (5)</td>
<td>564 (47)</td>
<td>56 (39, 68)</td>
<td>52 (31, 67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>120 (10)</td>
<td>452 (38)</td>
<td>56 (39, 68)</td>
<td>52 (31, 67)</td>
</tr>
<tr>
<td>A</td>
<td>All Dependents</td>
<td>Vaccinated</td>
<td>367 (13)</td>
<td>1205 (42)</td>
<td>23 (9, 36)</td>
<td>42 (29, 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>383 (13)</td>
<td>945 (33)</td>
<td>31 (9, 48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children (2-17 yrs)</td>
<td>Vaccinated</td>
<td>204 (13)</td>
<td>632 (42)</td>
<td>14 (-8, 32)</td>
<td>38 (20, 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>186 (12)</td>
<td>493 (33)</td>
<td>34 (16, 48)</td>
<td>55 (42, 66)</td>
</tr>
<tr>
<td></td>
<td>Adults (≥18)</td>
<td>Vaccinated</td>
<td>162 (12)</td>
<td>564 (41)</td>
<td>34 (16, 48)</td>
<td>55 (42, 66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>197 (14)</td>
<td>452 (33)</td>
<td>34 (16, 48)</td>
<td>55 (42, 66)</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>All Dependents</td>
<td>Vaccinated</td>
<td>336 (12)</td>
<td>1205 (43)</td>
<td>23 (9, 36)</td>
<td>42 (29, 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>344 (12)</td>
<td>945 (33)</td>
<td>31 (9, 48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children (2-17 yrs)</td>
<td>Vaccinated</td>
<td>188 (13)</td>
<td>632 (43)</td>
<td>11 (-14, 30)</td>
<td>31 (9, 48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>164 (11)</td>
<td>493 (33)</td>
<td>35 (16, 49)</td>
<td>56 (43, 67)</td>
</tr>
<tr>
<td></td>
<td>Adults (≥18)</td>
<td>Vaccinated</td>
<td>147 (11)</td>
<td>564 (42)</td>
<td>35 (16, 49)</td>
<td>56 (43, 67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>180 (13)</td>
<td>452 (34)</td>
<td>35 (16, 49)</td>
<td>56 (43, 67)</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>All Dependents</td>
<td>Vaccinated</td>
<td>29 (1)</td>
<td>1205 (54)</td>
<td>39 (-1, 62)</td>
<td>60 (33, 76)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>37 (2)</td>
<td>945 (43)</td>
<td>39 (-1, 62)</td>
<td>60 (33, 76)</td>
</tr>
<tr>
<td></td>
<td>Children (2-17 yrs)</td>
<td>Vaccinated</td>
<td>15 (1)</td>
<td>632 (54)</td>
<td>44 (-9, 72)</td>
<td>73 (43, 87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>21 (2)</td>
<td>493 (42)</td>
<td>44 (-9, 72)</td>
<td>73 (43, 87)</td>
</tr>
</tbody>
</table>

CI=confidence interval; VE=(1-odds ratio) x 100.

*VE Adjusted for age group, time of specimen collection, location, and gender

"Medically Ready Force...Ready Medical Force"
Summary of DoD Beneficiaries & U.S.-Mexico Border Civilians

• Overall VE was moderately protective and significant

• A(H1N1)pdm09: VE was highest among adults at 56%

• A(H3N2): VE was highest among children at 73%

• B: VE was highest among children at 54%
Service Member Vaccine Effectiveness Estimates
Service Members: Study Design

- Case / Test-negative control design
- Population: Active component Service Members
 - Army, Navy, Air Force, Marines
 - CONUS and OCONUS
- Time Period:
 - Influenza B and A(H1N1): Restricted to peak influenza months (Nov 1 – Feb 15)
 - Influenza A (any subtype) and A(H3N2): Restricted to peak Flu A months (Jan 1- Feb 15)
- Lab-confirmed flu cases: positive by rapid, RT-PCR, or culture assays
- Test-negative Controls: negative by RT-PCR or culture assays (subjects with negative rapid excluded)
- Models adjusted for sex, age category, and month of diagnosis
- Type and sub-type VE calculated, if analysis supported by data

“Medically Ready Force...Ready Medical Force”
Service Members: Vaccination Information & Case Subtypes

• Vaccination
 – IIV was the only vaccine type among the study subjects
 – 92% of subjects had prior flu vaccine in previous 5 years

• Cases
 – Influenza A (any subtype) = 1,911
 – Influenza A(H3N2) = 37
 – Influenza A(H1N1) = 347
 – Influenza B = 2,033
Service Members: Cases and Controls by Age Group

“Medically Ready Force...Ready Medical Force”
Service Members: Interim VE Estimates 2019-2020

<table>
<thead>
<tr>
<th>Influenza Type/Subtype</th>
<th>Time Period</th>
<th>Vaccine Type</th>
<th>Cases N (%)</th>
<th>Controls N (%)</th>
<th>Crude VE (95% CI)</th>
<th>Adjusted VE (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A (any subtype)</td>
<td>JAN-FEB</td>
<td>Vaccinated</td>
<td>1732 (91)</td>
<td>2038 (92)</td>
<td>13 (-8, 30)</td>
<td>12 (-10, 30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>179 (9)</td>
<td>184 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(H1N1)</td>
<td>JAN-FEB</td>
<td>Vaccinated</td>
<td>308 (89)</td>
<td>2038 (92)</td>
<td>29 (-3, 51)</td>
<td>28 (-5, 51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>39 (11)</td>
<td>184 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>NOV-FEB</td>
<td>Vaccinated</td>
<td>22 (59)</td>
<td>3699 (74)</td>
<td>49 (2, 74)</td>
<td>58 (9, 80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>15 (41)</td>
<td>1283 (26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza B</td>
<td>NOV-FEB</td>
<td>Vaccinated</td>
<td>1515 (75)</td>
<td>3699 (74)</td>
<td>-1 (-14, 10)</td>
<td>31 (20, 40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unvaccinated</td>
<td>518 (25)</td>
<td>1283 (26)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted for sex, age, and month of diagnosis

Medically Ready Force...Ready Medical Force
Among Service Members, the 2019-2020 influenza vaccine provided:

- Low to moderate protection against influenza B (31%)
- Moderate protection against A(H3N2) (58%)
- Non-statistically significant low protection against influenza overall (12%) and A(H1N1) (28%)
Summary of DoD VE Results

Influenza Midseason Vaccine Effectiveness 2019-2020

Overall---DoD Dependents/BIDS---54 (46, 60)
B---DoD Dependents/BIDS---51 (41, 59)
B---Service Members---31 (20, 40)
A (all subtypes)---DoD Dependents/BIDS---45 (33, 54)
A (all subtypes)---Service Members---12 (-10, 30)
A(H1N1)pdm09---DoD Dependents/BIDS---42 (29, 52)
A(H1N1)pdm09---Service Members---28 (-5, 51)
A(H3N2)---DoD Dependents/BIDS---60 (33, 76)
A(H3N2)---Service Members---58 (9, 80)

“Medically Ready Force...Ready Medical Force”
Summary of DoD VE Results

• Statistically significant VE estimates indicated an overall midseason VE of 54%
 – VE for influenza A 45%, indicating moderate protection
 – VE for influenza B ranged from 31-51%, indicating low to moderate protection
 – VE for A(H1) and ranged 42%, indicating moderate protection
 – Protection was best for A(H3) and ranged from 58-60%, indicating moderate protection
Limitations

• Generalizability
 – Subjects were medically attended; did not assess vaccine impact on less severe cases
 – Active Duty military population is highly immunized; this could have a negative impact on VE (potential method issues and biological effects such as attenuated immune response with repeated exposures)
 – Populations are younger; did not assess vaccine impact in older, high-risk populations
Vaccine Strain Recommendations

• Based on the genetic and VE data, recommendations for the 2020-2021 influenza vaccine
 – For the 2019-2020 influenza vaccine A(H1N1) component: Consider alternate to A/Brisbane/02/2018-like virus, potentially a clade 6B.1A, subgroup 5A representative virus
 – For the 2019-2020 influenza vaccine A(H3N2) component: Consider transition to H3N2 3C.2a1b clade virus
 – For the 2019-2020 influenza vaccine B/Victoria component: Consider replacement of B/Colorado/06/2017-like virus with representative 3-deletion virus
 – The above three influenza strains are recommended for the trivalent vaccine, and for the quadrivalent vaccine to include these three in addition to the B/Yamagata component: maintain the B/Phuket/3073/2013-like virus
Thank you
Acknowledgements

65th MEDICAL BRIGADE
LTC Christopher Hatcher
SGT Arthur Cross
SGT Alicia Manthe
Ms. Inkyong Chang
Ms. Hee Eun Kim

AFRIMS
COL Mark Fukuda
COL John Maza
COL Norm Waters
LTC Stefan Fernandez
MAJ Katie Poole-Smith
Dr. Chonticha Klongthong
Ms. Thipwong Tipawan
Ms. Tippa Wongstitwilairoong

NAMRU-2
CAPT Patrick Blair
LCDR Robert Hontz
LCDR Jose Garcia
CDR Frederick Stell
Mr. John Brooks
Mr. Vireak Heang
Mr. Agus Rachmat
Ms. Chenda Yi

NAMRU-3
LCDR Michael Gregory
LCDR David Wolfe
Dr. Hala Bassaly
Dr. Anne Fox
Dr. Emad Mohareb
Dr. Mayar Said
Dr. Tamer Saied
Mr. Ehab Amir

NAMRU-6
LT Eugenio Abente
Dr. Sonia Ampuero
Dr. Max Grogl
Dr. Yeny Tinoco
Dr. Marita Silva
Dr. Giselle Soto
Ms. Angélica Espinoza
Ms. Carolina Guevara

Dr. Ivy Asante
Ms. Augustina Arjarquah
Mr. Erasmus Kotev

Jordan Royal Medical Services
LT COL William Haddidin
Capt Mohamed Maiyta

Central Public Health Lab, Jordan
Dr. Mohmaud Gazo

Ministry of Health, Jordan
Dr. Sami ElSheikh

CA and County Depts of Health
Dr. Olivia Arizmendi
Dr. Maria Fierro
Dr. Paula Kriner
Dr. Yadira Medrano
Dr. Esmeralda Iniguez-Stevens

NHRC
LT Nathaniel Christy
Dr. Chris Myers
Ms. Carrie Falgout
Mr. Christian Hansen
Ms. Erin Hansen

CDC-BIDS
Dr. Kathleen Moser
Ms. Eva Fabian
Ms. Alba Phippard

LRMC/PHC-Europe
COL Rodney Coldren
COL Alexander Kayatani
CPT Cole Anderson
SSgt Brianne Holdbrook
Dr. Michael Koenig
Mr. Fritz Castillo

University of Ghana – Noguchi
Memorial Institute for Medical Research
Dr. William Ampofo

“Medically Ready Force...Ready Medical Force”
Acknowledgements

USAMRD-K
Maj Gen (Dr.) Denis Janga
LTC John Distelhorst
Dr. Wallace Bulimo
Dr. Denis Byarugaba
Dr. Bernard Erima
Dr. Hannah Kibuuka
Dr. Chesnodi Kulanga
Dr. Gerald Misinzo
Dr. Fred Wabwire-Mangen
Ms. Janet Majanja
Mr. Derrick Mimbe

Tanzania National Influenza Center
Mr. Lawrence Mapunda
Ms. Vumilia Mwalongo

AFHSB
COL Douglas Badzik
COL James Stein
CAPT Guillermo Pimentel
CDR Mark Scheckelhoff
Dr. Angelia Cost
Dr. Jose “Toti” Sanchez
Ms. Zheng Hu
Ms. Ashley Treharne
Ms. Alexis Oetting

AFHSB AF Satellite
Dr. Sara Bazaco
Ms. Lindsay Morton

USAFSAM
Lt Col Anthony Robbins
Capt Amy Bogue
SSgt Dominic Anderson
SSgt Brandon Ray
SSgt Ashley Seaton
SSgt Ashley Serrano
SrA Dalton Barrie
Dr. Anthony Fries
Ms. Ashley Treharne
Ms. Alexis Oetting

“Medically Ready Force...Ready Medical Force”

Ms. Pamela Bentley
Mr. Matthew Couch
Ms. Kathleen Davenport
Ms. Carol Garrett
Mr. William Gruner
Mr. James Hanson
Mr. Matthew Levine
Mr. Andrew Martin
Ms. Renee Mayhon
Mr. Donald Minnich
Ms. Dannielle Parlett
Ms. Marie Powell
Mr. Andrew Rhinevault
Mr. Matthew Sanders
Mr. David Sia
Ms. Aleta Yount
Questions?

CDR Mark Scheckelhoff, PhD, MPH
Focus Area Lead, AFHSB-GEIS Respiratory Infections Surveillance
Tel: 301-319-3258
E-mail: mark.r.scheckelhoff.mil@mail.mil

COL Douglas Badzik, MD, MPH
Chief, Armed Forces Health Surveillance Branch
E-mail: douglas.a.badzik.mil@mail.mil

CAPT Guillermo Pimentel, PhD
Chief, AFHSB-Global Emerging Infections Surveillance
E-mail: guillermo.pimentel2.mil@mail.mil