

OFFICE OF THE UNDER SECRETARY OF WAR

4000 DEFENSE PENTAGON
WASHINGTON, D.C. 20301-4000

PERSONNEL AND
READINESS

The Honorable Susan Collins
Chair
Committee on Appropriations
United States Senate
Washington, DC 20510

JAN 21 2026

Dear Madam Chair:

The Department's response to section 721 of the John Warner National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364), "Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM," is enclosed. Section 721 requires a report after the 3rd, 7th, 11th, and 15th years of the longitudinal study.

This 15-year update and final report reviews key study findings on traumatic brain injury (TBI) diagnosis, care, and outcomes, while underscoring the unique impacts of TBI on the system of care, caregiver health, and family functioning. TBI symptoms can fluctuate in type and intensity. Service members and veterans may experience varied and prolonged recoveries, while their health care and rehabilitation needs may continue to change and persist over 15 years. Unmet rehabilitation needs are associated with mental health issues, environmental barriers, and health care delivery characteristics. For those impacted, resilience may be a key intervention point.

Thank you for your continued strong support for our Service members, veterans, and their families. I am sending similar letters to the President of the Senate, the Speaker of the House, and the other congressional defense committees.

Sincerely,

Sean O'Keefe
Deputy Under Secretary of War for Personnel
and Readiness

Enclosure:
As stated

cc:
The Honorable Patty Murray
Vice Chair

OFFICE OF THE UNDER SECRETARY OF WAR

4000 DEFENSE PENTAGON
WASHINGTON, D.C. 20301-4000

PERSONNEL AND
READINESS

The Honorable Tom Cole
Chairman
Committee on Appropriations
U.S. House of Representatives
Washington, DC 20515

JAN 21 2026

Dear Mr. Chairman:

The Department's response to section 721 of the John Warner National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364), "Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM," is enclosed. Section 721 requires a report after the 3rd, 7th, 11th, and 15th years of the longitudinal study.

This 15-year update and final report reviews key study findings on traumatic brain injury (TBI) diagnosis, care, and outcomes, while underscoring the unique impacts of TBI on the system of care, caregiver health, and family functioning. TBI symptoms can fluctuate in type and intensity. Service members and veterans may experience varied and prolonged recoveries, while their health care and rehabilitation needs may continue to change and persist over 15 years. Unmet rehabilitation needs are associated with mental health issues, environmental barriers, and health care delivery characteristics. For those impacted, resilience may be a key intervention point.

Thank you for your continued strong support for our Service members, veterans, and their families. I am sending similar letters to the President of the Senate, the Speaker of the House, and the other congressional defense committees.

Sincerely,

Sean O'Keefe
Deputy Under Secretary of War for Personnel
and Readiness

Enclosure:
As stated

cc:
The Honorable Rosa L. DeLauro
Ranking Member

OFFICE OF THE UNDER SECRETARY OF WAR

4000 DEFENSE PENTAGON
WASHINGTON, D.C. 20301-4000

PERSONNEL AND
READINESS

The Honorable Roger F. Wicker
Chairman
Committee on Armed Services
United States Senate
Washington, DC 20510

JAN 21 2026

Dear Mr. Chairman:

The Department's response to section 721 of the John Warner National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364), "Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM," is enclosed. Section 721 requires a report after the 3rd, 7th, 11th, and 15th years of the longitudinal study.

This 15-year update and final report reviews key study findings on traumatic brain injury (TBI) diagnosis, care, and outcomes, while underscoring the unique impacts of TBI on the system of care, caregiver health, and family functioning. TBI symptoms can fluctuate in type and intensity. Service members and veterans may experience varied and prolonged recoveries, while their health care and rehabilitation needs may continue to change and persist over 15 years. Unmet rehabilitation needs are associated with mental health issues, environmental barriers, and health care delivery characteristics. For those impacted, resilience may be a key intervention point.

Thank you for your continued strong support for our Service members, veterans, and their families. I am sending similar letters to the President of the Senate, the Speaker of the House, and the other congressional defense committees.

Sincerely,

Sean O'Keefe
Deputy Under Secretary of War for Personnel
and Readiness

Enclosure:
As stated

cc:
The Honorable Jack Reed
Ranking Member

OFFICE OF THE UNDER SECRETARY OF WAR

4000 DEFENSE PENTAGON
WASHINGTON, D.C. 20301-4000

PERSONNEL AND
READINESS

The Honorable Mike D. Rogers
Chairman
Committee on Armed Services
U.S. House of Representatives
Washington, DC 20515

JAN 21 2026

Dear Mr. Chairman:

The Department's response to section 721 of the John Warner National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364), "Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM," is enclosed. Section 721 requires a report after the 3rd, 7th, 11th, and 15th years of the longitudinal study.

This 15-year update and final report reviews key study findings on traumatic brain injury (TBI) diagnosis, care, and outcomes, while underscoring the unique impacts of TBI on the system of care, caregiver health, and family functioning. TBI symptoms can fluctuate in type and intensity. Service members and veterans may experience varied and prolonged recoveries, while their health care and rehabilitation needs may continue to change and persist over 15 years. Unmet rehabilitation needs are associated with mental health issues, environmental barriers, and health care delivery characteristics. For those impacted, resilience may be a key intervention point.

Thank you for your continued strong support for our Service members, veterans, and their families. I am sending similar letters to the President of the Senate, the Speaker of the House, and the other congressional defense committees.

Sincerely,

Sean O Keefe
Deputy Under Secretary of War for Personnel
and Readiness

Enclosure:
As stated

cc:
The Honorable Adam Smith
Ranking Member

OFFICE OF THE UNDER SECRETARY OF WAR
4000 DEFENSE PENTAGON
WASHINGTON, D.C. 20301-4000

PERSONNEL AND
READINESS

The Honorable J.D. Vance
President of the Senate
United States Senate
Washington, DC 20510

JAN 21 2026

Dear Mr. President:

The Department's response to section 721 of the John Warner National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364), "Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM," is enclosed. Section 721 requires a report after the 3rd, 7th, 11th, and 15th years of the longitudinal study.

This 15-year update and final report reviews key study findings on traumatic brain injury (TBI) diagnosis, care, and outcomes, while underscoring the unique impacts of TBI on the system of care, caregiver health, and family functioning. TBI symptoms can fluctuate in type and intensity. Service members and veterans may experience varied and prolonged recoveries, while their health care and rehabilitation needs may continue to change and persist over 15 years. Unmet rehabilitation needs are associated with mental health issues, environmental barriers, and health care delivery characteristics. For those impacted, resilience may be a key intervention point.

Thank you for your continued strong support for our Service members, veterans, and their families. I am sending similar letters to the Speaker of the House and the congressional defense committees.

Sincerely,

Sean O'Keefe
Deputy Under Secretary of War for Personnel
and Readiness

Enclosure:
As stated

OFFICE OF THE UNDER SECRETARY OF WAR

4000 DEFENSE PENTAGON
WASHINGTON, D.C. 20301-4000

PERSONNEL AND
READINESS

The Honorable Mike Johnson
Speaker of the House
U.S. House of Representatives
H-209, The Capitol
Washington, DC 20515

JAN 21 2026

Dear Mr. Speaker:

The Department's response to section 721 of the John Warner National Defense Authorization Act for Fiscal Year 2007 (Public Law 109-364), "Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM," is enclosed. Section 721 requires a report after the 3rd, 7th, 11th, and 15th years of the longitudinal study.

This 15-year update and final report reviews key study findings on traumatic brain injury (TBI) diagnosis, care, and outcomes, while underscoring the unique impacts of TBI on the system of care, caregiver health, and family functioning. TBI symptoms can fluctuate in type and intensity. Service members and veterans may experience varied and prolonged recoveries, while their health care and rehabilitation needs may continue to change and persist over 15 years. Unmet rehabilitation needs are associated with mental health issues, environmental barriers, and health care delivery characteristics. For those impacted, resilience may be a key intervention point.

Thank you for your continued strong support for our Service members, veterans, and their families. I am sending similar letters to the President of the Senate and the congressional defense committees.

Sincerely,

Sean O'Keefe
Deputy Under Secretary of War for Personnel
and Readiness

Enclosure:
As stated

Report to Congress

15-Year Update and Final Report: Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM

January 2026

The estimated cost of this report for the Department of War (DoW) is approximately \$55,000.00 for Fiscal Years 2023–2025. This includes \$33,000.00 in expenses and \$22,000.00 in DoW labor.

Generated on 2025Jan15 RefID: E-767D323

Introduction

This report is in response to section 721 of the John Warner National Defense Authorization Act (NDAA) for Fiscal Year (FY) 2007 (Public Law 109-364), which requests that the Secretary of Defense “conduct a longitudinal study on the effects of traumatic brain injury [TBI] incurred by members of the Armed Forces serving in Operation IRAQI FREEDOM [OIF] or Operation ENDURING FREEDOM [OEF] on the members who incur such an injury and their families.” Congress directed that the study run for 15 years, and that the Department submit reports after the 3rd, 7th, 11th, and 15th years in consultation with the Secretary of Veterans Affairs. In 2009, the then-Secretary of Defense directed the Defense and Veterans Brain Injury Center (DVBIC) to address this congressional mandate. DVBIC is known today as the Traumatic Brain Injury Center of Excellence, a Component of the Defense Health Agency.

In compliance with the then-Secretary of Defense’s direction, the Department supported two component studies. The first, the 15-Year Longitudinal TBI Study (also referred to as “the 15-Year Studies”), consisted of three sub-studies: (1) the Natural History of TBI Study; (2) the Caregiver and Family Member (CGFM) Study; and (3) the Archival Studies (described in the 3-Year Update). Each sub-study targeted specific subsets of Service members, veterans, and their families. In 2015, in partnership with the Department of Veterans Affairs (VA), the Department launched the second component study, Improved Understanding of Medical and Psychological Needs in Veterans and Service Members with Chronic TBI (IMAP). Appendix A provides an overview of each of these studies.

The 3-Year Update introduced the methodology for the 15-Year Studies. The 7-Year Update summarized 7 years of the 15-Year Studies and 2 years of IMAP data, with 6 conclusions and 9 recommendations. The 11-Year Update provided 7 conclusions with 25 areas of emphasis to Congress. These conclusions, compiled from relevant and impactful findings, contribute to the body of knowledge on the complexities of TBI outcomes. The 11-Year Update offered data-driven clinical and health policy considerations to continue elevated levels of support for Service members, veterans, their families, and the providers charged with their care. This final report summarizes findings from the Natural History of TBI Study, the IMAP study, and the CGFM Study. These research findings can better inform clinicians and operational leadership about best practices and provide policymakers with data to support warfighters and veterans who have incurred TBI, and their families.

Background

The Department of War (DoW) defines TBI as a traumatically induced structural injury or physiological disruption of brain function as a result of an external force that is indicated by new onset or worsening of at least one of the following clinical signs immediately following the event: any alteration of mental status (e.g., confusion, disorientation, slowed thinking); any loss of memory for events immediately before or after the injury; or any period of loss of or a decreased level of consciousness, observed or self-reported.¹ Since 2000, over half a million Service members have sustained a TBI, of which 82 percent were mild TBI (or concussion).² Most individuals who sustain a mild TBI fully recover. However, those with a moderate, severe,

or penetrating TBI, multiple mild TBIs, or co-occurring medical or psychological conditions experience varied and sometimes prolonged recoveries.^{3,4}

Over the past 15 years, study investigators have significantly contributed to TBI knowledge, producing 240 peer-reviewed manuscripts (see Appendix B), 311 published abstracts, and 505 conference presentations. Although the study sample used to generate this report does not fully represent the entirety of possible TBI outcomes for military or veteran populations, it does represent a diversity of injury characteristics and individuals in need of ongoing support. A recently published overview of TBI research emerging from this period highlights additional clinical, research, and policy drivers that have advanced the TBI state of the science.⁵

Year 15/Final Study Outcomes

Section 721 of the NDAA for FY 2007 (Public Law 109–364) mandated that the longitudinal study of TBI address four elements: 1) the long-term physical and mental health effects of TBIs incurred by members of the Armed Forces during service in OIF or OEF; 2) the health care, mental health care, and rehabilitation needs of such members for such injuries after the completion of inpatient treatment through the DoW, the VA, or both; 3) the type and availability of long-term care rehabilitation programs and services within and outside the DoW and the VA for such members for such injuries, including community-based programs and services and in-home programs and services; and 4) the effect on family members of a member incurring a TBI. These four elements informed the study design, data collection, and data analysis for the 15-Year Studies. The following sections present research findings relevant to each element.

Element 1: The Long-Term Physical and Mental Health Effects of TBIs Incurred by Members of the Armed Forces During Service in OIF or OEF

Since physical and mental health comorbidities are common and persistent following a TBI, awareness is crucial for clinicians treating Service members and veterans. Therefore, clinicians should continue to monitor patients closely for the potential development of these conditions. DoW and VA medical facilities, in collaboration with operational leadership, remain committed to acknowledging, addressing, and supporting the latent and long-term effects following TBI. Although many symptoms resolve within weeks of injury, some patients in this study experienced lingering symptoms at least 15 years after injury, underscoring the need for ongoing care.

- Research across populations indicated the prevalence of physical or medical comorbidities after TBI increases with time. Participants most often reported chronic pain, sleep disorders, cardiovascular disorders, orthopedic issues, and sexual dysfunction. While this trend may be influenced by factors unrelated to TBI, such as aging (as individuals age, they are more likely to report comorbidities) and recall bias (individuals prompted about a condition are more likely to report it than when unprompted), these co-occurring conditions can alter or magnify perception of other conditions, such as co-occurring psychological health conditions.

- Posttraumatic stress disorder (PTSD), low resilience, and sleep disturbance are common sequelae of TBI and may serve as clinical indicators for Service members and veterans at greater risk for poor long-term outcomes. Therefore, screening patients with TBI of any severity for these risk factors is critical to determining appropriate treatment needs.⁶
- Post-concussion symptoms are neither specific nor unique to mild TBI, requiring cautious interpretation when reported many years after injury. These symptoms should not be uncritically assumed to solely reflect persistent TBI symptomatology or be directly attributable to the consequences of the brain injury itself. In many cases, individuals report “post-concussion-like” symptoms many months or years following injury that could be explained by other medical or psychological conditions (e.g., depression due to a death in the family, fatigue due to iron deficiency, poor sleep due to back pain).⁷ Continuously improving our understanding of the variability in post-concussion symptom reporting over time, and disseminating related information, will enhance support to the Military Health System (MHS), the Veterans Health Administration (VHA), and community clinicians and researchers who work with this population.
- Clinicians may consider additional screening during TBI-related visits using disability rating scales for cognitive, physical, and emotional functioning, and social support scales. TBI history and severity, combined with these screening results, will help identify at-risk patients requiring additional support.

As part of ongoing 15-Year Study efforts, the DoW stored blood samples for analyses of genetic and proteomic markers of clinical states and associated outcomes. Blood-based biomarkers — molecular indicators of biological and pathological processes in blood — are of particular interest in this sample of Service members and veterans.

- The specific clinical value of these findings varies with TBI severity, measured outcomes, and phase of TBI recovery. In a small sample of participants with TBI of all severity levels, blood-based biomarkers collected within 1 year of injury were related to worse self-reported neurobehavioral outcomes two or more years after injury.⁸⁻¹⁰ This research builds on prior biomarker findings, which primarily focused on TBI recovery days to weeks after injury, extending the potential clinical use of biomarkers.
- A panel of blood-based biomarkers — such as tau, NfL, GFAP, and UCH-L1 — measured within days or weeks following TBI or measured within the first year after injury, may be a useful tool for predicting future cognitive decline and poor neurobehavioral outcomes. Identification of those at risk for poor outcomes, immediately after and up to 1 year after TBI, will allow for improved and targeted monitoring and treatment.⁸⁻¹⁰

The Natural History of TBI Study, initiated in 2010, reflected the military and scientific communities’ focus on understanding the lifetime effects of blast exposures from Improvised Explosive Devices. The study assessed blast related outcomes in Service members and veterans with TBI by asking a single question about the number of times the participant “felt the blast wave” over their lifetime. While this study revealed an association between lifetime blast

exposure and self-reported outcomes, particularly PTSD and post concussive symptoms reported many years after a TBI, no link was found to objective outcome measures such as biomarkers or cognitive tests. Researchers and operational leaders continue to investigate this discrepancy, particularly the potential role of PTSD.

Since then, efforts to understand blast injury have evolved toward the effects of repeated blast overpressure (BOP) exposure during training. As the Department's understanding of blast-related brain health outcomes progressed, this research expanded to include new measures quantifying blast events, including exposure to one's own weapon systems. With collaborators, the Natural History of TBI Study investigators continue to pursue research to improve measurement of BOP exposure effects in the military.

Study findings indicate that TBI outcomes can vary based on individual differences (e.g., resilience, brain chemistry), TBI history (number and severity), comorbidities, and treatment responsiveness. Comorbidities, especially PTSD and sleep disturbances, play a critical role in these outcomes. These study findings support the current VA/DoW Clinical Practice Guidelines for treating post-TBI symptoms.

Element 2: The Health Care, Mental Health Care, and Rehabilitation Needs of Such Members for Such Injuries After the Completion of Inpatient Treatment through the DoW, the VA, or Both

Most TBI patients do not require inpatient rehabilitation. Since 2000, 82 percent of military TBIs have been classified as mild (mild TBI or concussion).² Most individuals who sustain mild TBI will recover fully over several weeks following the recommended return to duty guidelines.³ Using a survey tool, study investigators queried participants over many years about health care services they identified as a need (e.g., physical therapy for chronic disability, mental health care treatment, cognitive rehabilitation program) that were received and health care services they identified as a need that were not pursued, completed, or received. If services were self-identified as a need but not pursued, completed, or received over the course of the study, these activities were categorized as “rehabilitation needs.”

- Service members and veterans who have moderate, severe, or penetrating TBI; multiple mild TBIs; and/or co-occurring medical or psychological conditions may experience varied and sometimes prolonged recoveries requiring inpatient TBI rehabilitation, either at the time of injury or, sometimes, at the end of their military career. For this subset of TBI patients requiring prolonged recoveries, study findings reveal that rehabilitation and healthcare needs change over time with patient improvement or decline. Therefore, healthcare and rehabilitation services should continue to support the Service member or veteran at each stage of recovery.
- Over the 15 years following a TBI, more than 60 percent of participants reported needing help with cognitive complaints. Among these, a large proportion requested additional support (39 percent at 5 years; 46 percent at 10–15 years).^{11–13}

- Rehabilitation needs persisted throughout the chronic stages of TBI recovery. Study participants reported an average of 8 rehabilitation needs (+/- 6 needs) when queried at 5, 10, and 15 years after TBI, demonstrating the ongoing nature of these needs. Moreover, their rehabilitation needs evolved and changed over time.¹⁴⁻¹⁷

Service members and veterans hospitalized for TBI consistently reported other needs, such as coordinating and accessing services and managing daily stressors and problems.

- While Service members and veterans needed help coordinating and accessing medical, psychological, and rehabilitation services at both 5 years (48 percent, 40 percent, and 42 percent, respectively) and 10–15 years (47 percent, 42 percent, and 42 percent) post-TBI, a considerable proportion of these needs remained unmet. Specifically, these services remained unmet for up to 20 percent of those hospitalized 5 years post-TBI, with findings demonstrating an increasing trend to 22–24 percent at 10–15 years post-TBI.
- About half of those hospitalized with TBI reported daily stress management needs, while half of those who reported these needs also reported them as unmet (24–26 percent of the study sample). At 10–15 years post-TBI, slightly more than half of the study sample (51–54 percent) reported daily stress management needs, among which an estimated one-third of this group (33–34 percent) also reported their need as unmet.^{12,13}

Examining risk factors for unmet needs is critical to determine which Service members and veterans will have long-term needs or benefit most from targeted interventions. Environmental barriers, such as perceived physical and policy barriers (e.g., appointment availability outside business hours and staffing), play an important role. Examining these environmental barriers can help identify populations at greater risk of having their healthcare needs unmet, as those with TBI who perceive greater barriers are more likely to experience unmet needs due to lack of care.

Family involvement and support are integral to successful rehabilitation and encompass a range of critical components. These include family education and training on TBI and on caring for Service members and veterans with physical, cognitive, and behavioral challenges after injury.

- Most families are satisfied with the health information provided by medical staff after injury. In the first 5 years, 69 percent of families reported this need as met, while 65 percent reported this need as met at 10–15 years. For the cases when information needs were met, families reported that medical providers provided clear explanations, used plain language, responded honestly, and demonstrated respect for patient and family wishes.¹⁸
- At 10–15 years after TBI, the role of the family member as primary caregiver can impact experiences. Specifically, spouses (compared to parents) of Service members and veterans with TBI and urban-dwelling families (compared to suburban families) are more likely to report unmet needs.¹⁹

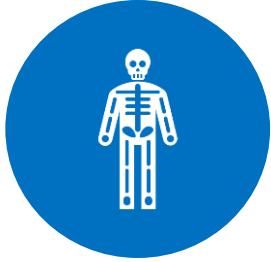
This research found that rehabilitation needs persist after TBI, care needs change over time, and ongoing rehabilitation needs are associated with worse outcomes. Among the most critical needs identified were improving memory and managing physical and mental health, including mood/stress. Cognitive disability was the most reported barrier to effective healthcare access

and use. Finally, findings indicate that family involvement and support are integral to successful rehabilitation.

Element 3: The Type and Availability of Long-Term Care Rehabilitation Programs and Services Within and Outside the DoW and the VA for Such Members for Such Injuries, Including Community-Based Programs and Services and In-Home Programs and Services

The MHS and VHA collaborate with community-based organizations to implement programs that support treatment, rehabilitation, and long-term care of Service members and veterans with TBI. These programs also support transition from the MHS to the VHA and into home and community-based programs.

- Delaying critical care following TBI has lasting repercussions to the Service member or veteran and places an additional cost burden on the health care system. In an outpatient VA setting, chronic TBI and greater disability levels impacted cost.^{20,21}
- Based on these findings, the DoW continues ongoing collaborations and building new partnerships to execute policies effectively.
- The VA continues to provide coordinated, interdisciplinary clinical services and case management, while promoting telehealth to enhance access to rehabilitation specialists with TBI training and experience across the system.
- DoW and VA continue to translate research findings to inform the implementation (e.g., Improving Health Care Access and Engagement for Veterans and Service Members with TBI Morbidity [I-HEAL Study]),²² enhancement (e.g., Defense Intrepid Network's Family Wellness Program),²³ and evaluation of clinical programs and initiatives (e.g., Post-traumatic Headache Clinical Recommendation Evaluation Study)²⁴ to ensure they proactively address latent and chronic problems related to TBI care.


TBI has system-level impacts from acute through long-term care needs. Disability level, length of acute care stay, delayed care, and age impact cost. Study findings show Service members and veterans prefer multidisciplinary care models within their system of care. Additionally, study findings suggest that facilitators and barriers to care may be best understood through implementation science studies for TBI services.

Element 4: The Effect on Family Members of a Member Incurring a TBI

Understanding of family caregivers and the impact of TBI on the families of Service members and veterans has evolved. Initially, the CGFM Study only enrolled caregivers of Service members and veterans with moderate to severe TBI, where the care primarily involved medical support for activities of daily living (ADL), such as bathing, dressing, and toileting.²⁵ However, as more Service members and veterans with mild TBI (also known as concussion) reported caregiver assistance with nontraditional ADL (e.g., emotional problems, pain management, legal advocacy, health care navigation), the study expanded to include caregivers for Service members and veterans with mild TBI. This change was driven by the documented impact of mild TBI and its comorbidities (PTSD, depression, pain, headaches, substance abuse, sleep, hearing), illustrated by the Natural History of TBI Study.

Families of Service members and veterans with TBI and comorbidity reported significant impairment in several domains of functioning. The CGFM study used the Health-Related Quality of Life (HRQoL) tool to assess physical, psychological, social, and caregiving domains and outcomes (Figure 1).²⁶ In addition to HRQoL, the study assessed levels of distress in the family environment, family relationships (including parent reports of impact to children), and financial stability for many years after the TBI.

Figure 1. Health-Related Quality of Life Domains and Their Outcomes

Caregiving	Financial	Physical
<ul style="list-style-type: none">• Caregiver strain• Vigilance• Caregiver-specific anxiety• Feelings of loss• Emotional suppression• Military health care	<ul style="list-style-type: none">• Financial strain• Out-of-pocket caregiving expense• Economic quality of life	<ul style="list-style-type: none">• Pain interference• Sleep impairment• Fatigue
Social	Psychological	Family
<ul style="list-style-type: none">• Social participation• Social isolation• Relationships• Social support	<ul style="list-style-type: none">• Anxiety and depression• Anger• Stress• Positive affect• Well-being	<ul style="list-style-type: none">• Family functioning, experiences, and disruption• Couples' relationship satisfaction

- Family members caring for a Service member or veteran with a mild TBI reported worse HRQoL than those caring for one with a moderate to severe TBI. Given that the majority of mild TBIs were from an injury sustained on average five and a half years ago, caregiving for persistent adjustment-related neurobehavioral symptoms was likely related to the comorbid conditions present (e.g., PTSD, depression, pain, and headache).²⁷
- The CGFM study found that military TBI affects the whole family — caregiver health and family functioning impact Service member and veteran recovery from TBI, just as Service member and veteran recovery impact caregiver health and family functioning. This study found resilience may be an important intervention point for both family and the warfighter after TBI.
- Emotional health declined for many children following their parent's TBI and was impacted by Service member or veteran neurobehavioral symptoms, poor intimate partner HRQoL, and unhealthy family functioning.²⁸
- Factors such as military and medical status (TBI severity, comorbid conditions, combat deployments), intimate partner caregiving duration (hours caregiving, years caregiving), child-specific demographics (as reported by a parent, i.e., age, sex, biological child, living with both parents), and economic factors were *not* consistently associated with parent perception of pediatric HRQoL.²⁸

Family members providing care and support to a Service member or veteran after TBI could benefit from ongoing clinical services to help adapt to and cope with caregiver demands. Continuing to equip family members with the knowledge, skills, and resources to support those with TBI and comorbidities early in the recovery trajectory may help family members adapt to and cope with acute and long-term caregiving stressors. Children in these households may require long-term intervention and monitoring. Early screening and intervention may also be required to evaluate children who may not meet clinical thresholds for a current diagnosis but are on a worsening trajectory.²⁹

Conclusions

The DoW and VA continue to prioritize TBI patient care through scientific advances and translation of research findings into practice in military medical treatment facilities, veterans' hospitals, and on the battlefield. Over the course of 15 years, the section 721 research findings provided strong scientific evidence in several key areas of impact for the DoW, including:

- Ongoing clinical assessment of depression, sleep, and PTSD, ensuring appropriate screening for these conditions in TBI patient care settings.
- Strengthened empirical data supporting the ongoing need for multidisciplinary care settings to treat TBI acutely and long-term, such as DoW's continued engagement with the VA Polytrauma/TBI Centers of Excellence and U.S. Special Operations Command pilot research.

- Improved understanding of the bidirectional impact of family functioning on warfighter health and outcomes after TBI and warfighter TBI health/outcomes on the family, as well as the need for family engagement in rehabilitation.
- Synthesized data across several publications that directly informed the 2021 VA/DoW Clinical Practice Guideline for the Management and Rehabilitation of Post-Acute Mild TBI; clinical support tool updates (e.g., Cognitive Rehabilitation, Neurocognitive Assessment Testing); subject matter expertise on the Sleep Disturbances after TBI Clinical Recommendation Expert Working Group; the original development of the Military Acute Concussion Evaluation; and the July 2021 update to the DoW TBI Caregiver Guide.
- A shift toward implementation science assessment and intervention of system-level facilitators and barriers to care.

The Departments are grateful for the thousands of Service members, veterans, family members, clinicians, and leaders in the field who participated in this study. Findings from congressionally mandated studies and ongoing advances in the broader scientific community continue to bring attention to evidence-based outcomes relevant to Service members, veterans, families, TBI care providers, the operational community, and policy experts to further optimize TBI standards of care. The DoW continues to keep its partners apprised of relevant findings with regular dialogue on approaches for incorporating mature research findings into a particular system of care.

References

1. Department of Defense. *Traumatic Brain Injury: Updated Definition and Reporting ASD(HA) Memorandum, April 6, 2015*. November 19, 2025. <https://health.mil/Reference-Center/Policies/2015/04/06/Traumatic-Brain-Injury-Updated-Definition-and-Reporting>
2. Traumatic Brain Injury Center of Excellence, Defense Health Agency. *DoD Numbers for Traumatic Brain Injury Worldwide: 2000-2024, Q2*. August 9, 2024. <https://www.health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers>
3. Vanderploeg RD, Curtiss G, and Belanger HG. Long-term neuropsychological outcomes following mild traumatic brain injury. *J Int Neuropsychol Soc*. 2005;11(3):228-36. <https://doi.org/10.1017/S1355617705050289>.
4. Lippa SM, French LM, Bell RS, Brickell TA, Lange RT. United States military service members demonstrate substantial and heterogeneous long-term neuropsychological dysfunction after moderate, severe, and penetrating traumatic brain injury. *J Neurotrauma*. 2020;37(4):608-617. <https://doi.org/10.1089/neu.2019.669>
5. Turner SM, Kiser SA, Gipson BJ, Martin EMM, Smith JM. Surveying the landscape: a review of longitudinal traumatic brain injury studies in service member and veteran populations. *J Neurotrauma*. 2023;40(11-12):1060-1074. <https://doi.org/10.1089/neu.2022.0237>
6. Lange RT, French LM, Bailie JM, et al. Clinical utility of PTSD, resilience, sleep, and blast as risk factors to predict poor neurobehavioral functioning following traumatic brain injury: a longitudinal study in U.S. military service members. *Qual Life Res*. 2022;31(8):2411-2422. <https://doi.org/10.1007/s11136-022-03092-4>
7. Lange RT, Lippa SM, Bailie JM, et al. Longitudinal trajectories and risk factors for persistent postconcussion symptom reporting following uncomplicated mild traumatic brain injury in U.S. military service members. *Clin Neuropsychol*. 2020;34(6):1134-1155. <https://doi.org/10.1080/13854046.2020.1746832>
8. Lange RT, Gill JM, Lippa SM, et al. Elevated serum tau and UCHL-1 concentrations within 12 months of injury predict neurobehavioral functioning 2 or more years following traumatic brain injury: a longitudinal study. *J Head Trauma Rehabil*. 2024;39(3):196-206. <https://doi.org/10.1097/htx.0000000000000877>
9. Lange RT, Lippa S, Brickell TA, Gill J, French LM. Serum tau, neurofilament light chain, glial fibrillary acidic protein, and ubiquitin carboxyl-terminal hydrolase L1 are associated with the chronic deterioration of neurobehavioral symptoms after traumatic brain injury. *J Neurotrauma*. 2023;40(5-6):482-492. <https://doi.org/10.1089/neu.2022.0249>

10. Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood biomarkers predict future cognitive decline after military-related traumatic brain injury. *Curr Alzheimer Res.* 2022;19(5):351-363. <https://doi.org/10.2174/1567205019666220330144432>
11. Mahoney EJ, Silva MA, Reljic T, et al. Rehabilitation needs at 5 years post-traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2021;36(3):175-185. <https://doi.org/10.1097/htr.0000000000000629>
12. Silva MA, Irizarri-Mendez A, Klocksieben F, et al. Preliminary investigation of predictors of rehabilitation needs 10-15 years after traumatic brain injury: a Veterans Affairs TBI Model Systems study. Poster presented at: Annual Military Health System Research Symposium; August 26-29, 2024; Kissimmee, FL.
13. Silva MA, Hoffman JM, O'Neil-Pirozzi TM, et al. Environmental barriers are associated with rehabilitation needs 10-to-15 years after traumatic brain injury: a Veterans Affairs TBI Model Systems study. *J Head Trauma Rehabil.* 2025;40(2):125-136. <https://doi.org/10.1097/HTR.0000000000001011>
14. Corrigan JD, Whiteneck G, Mellick D. Perceived needs following traumatic brain injury. *J Head Trauma Rehabil.* 2004;19(3):205-216. <https://doi.org/10.1097/00001199-200405000-00002>
15. Heinemann AW, Sokol K, Garvin L, Bode RK. Measuring unmet needs and services among persons with traumatic brain injury. *Arch Phys Med Rehabil.* 2002;83(8):1052-1059. <https://doi.org/10.1053/apmr.2002.34283>
16. Pickelsimer EE, Selassie AW, Sample PL, Heinemann AW, Gu JK, Veldheer LC. Unmet service needs of persons with traumatic brain injury. *J Head Trauma Rehabil.* 2007;22(1):1-13. <https://doi.org/10.1097/00001199-200701000-00001>
17. Whiteneck GG, Eage CB, Cuthbert JP, et al. *One and Five Year Outcomes After Moderate-to-Severe Traumatic Brain Injury Requiring Inpatient Rehabilitation: Traumatic Brain Injury Report.* Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, National Institute on Disability, Independent Living, and Rehabilitation Research, Administration for Community Living. U.S. Department of Health and Human Services. 2018. <https://stacks.cdc.gov/view/cdc/59524>
18. Finn JA, Klocksieben FA, Smith AN, et al. Family needs after traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2022;37(6):327-337. <https://doi.org/10.1097/htr.0000000000000799>
19. Tsen J, Finn JA, Klocksieben FA, et al. Long-term family needs after a traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2025;40(4):258-268. <https://doi.org/10.1097/HTR.0000000000001015>

20. Dismuke-Greer CE, Almeida E, Ryan JL, Nakase-Richardson R. Department of Defense military treatment facility and community care costs after traumatic brain injury in service members treated in Veterans Affairs Polytrauma Rehabilitation Centers: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2025;40(4):E300-E307. <https://doi.org/10.1097/HTR.0000000000001028>

21. Dismuke-Greer CE, Almeida E, Ryan J, Nakase-Richardson, R. Characterization and predictors of Veterans Affairs outpatient cost and utilization for traumatic brain injury. Poster presented at: American Congress of Rehabilitation Medicine 101st Annual Conference; October 31-November 3, 2024; Dallas, TX.

22. Improving Health Care Access and Engagement for Veterans and Service Members with TBI Morbidity (I-HEAL). *Implementation Science Core*. September 30, 2025. <https://ihealbrain.org/Core/Implementation>

23. Brickell TA, Wright MM, Baschenis SM, et al. The Family Wellness Program: a bench to bedside translation of behavioral and social science research into a clinical program for intimate partners of warfighters following traumatic brain injury. *Front Health Serv.* 2025;5:1575781. <https://doi.org/10.3389/frhs.2025.1575781>

24. Remigio-Baker RA, Kiser S, Ferdosi H et al. Current patterns of primary care provider practices for the treatment of post-traumatic headache in active duty military settings. *PLoS ONE*. 2020;15(7). <https://doi.org/10.1371/journal.pone.0236762>

25. Department of Defense. *Report to Congress on Eleven-Year Update: Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM*. May 4, 2021. <https://www.health.mil/Reference-Center/Reports/2021/05/04/Longitudinal-Study-on-Traumatic-Brain-Injury-Incurred-by-Members-of-the-Armed-Forces-in-OIF-OEF>

26. Cella D, Riley W, Stone A, et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. *J Clin Epidemiol.* 2010 Nov;63(11):1179-94. <https://doi.org/10.1016/j.jclinepi.2010.04.011>.

27. Brickell TA, Lippa SM, Wright MM, et al. Is traumatic brain injury severity in service members and veterans related to health-related quality of life in their caregivers? *J Head Trauma Rehabil.* 2022;37(6):338-349. <https://doi.org/10.1097/HTR.0000000000000802>

28. Brickell TA, Wright MM, Sullivan JK, Varbedian NV, French LM, Lange RT. Longitudinal symptom trajectories and risk factors for psychological distress in children of service members and veterans following traumatic brain injury. Manuscript in progress.

29. Brickell TA, French LM, Wright MM, et al. Family caregivers of service members in United States Department of Defense health care report impairment in longitudinal health outcomes. *Psychol Trauma.* 2025;17(2):406-415. <https://doi.org/10.1037/tra0001712>

Appendix A: Overview of TBI Studies

The Natural History of TBI Study

The Natural History of TBI Study examined the impact of TBI on Service members' and veterans' physical, mental, and cognitive health. This study recruited participants from military hospitals and clinics and through community outreach, such as social media and military-relevant events. This collection is the largest existing dataset of detailed clinical examinations of Service members across the spectrum of TBI severity and compared with injured and non-injured control subjects. The Natural History of TBI Study enrolled 1,836 participants, of which 90 percent were male, ranging in age from 18 to 65 years (average age was 36 years old); 68 percent were white; and 72 percent were Service members on active duty. The Natural History of TBI Study contributes to Elements 1–3 of the mandate from an outpatient perspective.

The Caregiver and Family Member Study

The CGFM Study explored the impact of Service members' and veterans' TBI on family members providing their care. This study recruited caregivers [family members and friends] from military hospitals and clinics and through community outreach, such as military events and social media. In total, 574 family members and friends provided insight into their experiences. Element 4 addresses these domains and the measures developed over the course of this study.

Improved Understanding of Medical and Psychological Needs in Veterans and Service Members with Chronic TBI

The IMAP study explores Elements 1–3 of the congressional mandate from an inpatient perspective. IMAP leveraged the VA TBI Model Systems Program lifetime study to examine the rehabilitation and health care needs of Service members and veterans with TBI. This study recruited participants from consecutive admissions to VA Polytrauma Rehabilitation Centers (PRCs), which provide the highest level of care in the VA Polytrauma System of Care, an integrated and coordinated continuum of programs and services developed and implemented at the height of OIF/OEF for eligible veterans and Service members with polytrauma and TBI. The five PRCs house VA Polytrauma/TBI Centers of Excellence within the VA Polytrauma System of Care and provide specialized rehabilitation programs for eligible veterans and Service members recovering from TBI, while serving as hubs for education and clinical research related to polytrauma and TBI.

Of the two main section 721 longitudinal TBI studies, different recruitment and study design methods allowed researchers to survey unique populations. The IMAP study enrolled active duty Service members and veterans from inpatient medical settings at the five VA PRCs. The Natural History of TBI Study enrolled most participants from outpatient settings at military medical treatment facilities across the MHS, also inclusive of active duty personnel, veterans, and Service members in transition.

The IMAP and 15-Year Longitudinal TBI Study investigators recruited populations intended to represent the diversity of TBIs incurred during OIF/OEF across the entire fighting force. There

are nuances and even some discrepancies across findings that are further explained in the publications listed in Appendix B. Study outcomes may diverge due to various participant, study, and injury characteristics. It is important to consider the context of the injuries, the individual, and the care system when drawing conclusions and understanding long-term outcomes.

Appendix B: List of Manuscripts and Select Presentations

Allan AC, Edmed SL, Sullivan KA, Karlsson LJ, Lange RT, Smith SS. Actigraphically-measured sleep-wake behaviour after mild traumatic brain injury: a case-control study. *J Head Trauma Rehabil.* 2017;32(2):E35-E45. <https://doi.org/10.1097/HTR.0000000000000222>

Babakhanyan I, Brickell TA, Bailie JM, et al. Gender disparities in neurobehavioral symptoms and the role of post-traumatic symptoms in US service members following mild traumatic brain injury. *J Neurotrauma.* 2024;41(13-14):e1687-e1696. <https://doi.org/10.1089/neu.2022.0462>

Bailey EK, Nakase-Richardson R, Patel N, et al. Supervision needs following veteran and service member moderate to severe traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2017;32(4):245-254. <https://doi.org/10.1097/HTR.0000000000000317>

Bailie JM, Kennedy JE, French LM, et al. Profile analysis of the neurobehavioral and psychiatric symptoms following combat-related mild traumatic brain injury: identification of subtypes. *J Head Trauma Rehabil.* 2016;31(1):2-12. <https://doi.org/10.1097/HTR.0000000000000142>

Bailie JM, Lippa SM, Hungerford L, French LM, Brickell TA, Lange RT. Cumulative blast exposure during a military career negatively impacts recovery from traumatic brain injury. *J Neurotrauma.* 2024;41(5-6):604-612. <https://doi.org/10.1089/neu.2022.0192>

Barshikar S, Nakase-Richardson R, Bell KR. Sleep disturbance and fatigue. In: Silver JM, McAllister TW, Arciniegas DB, eds. *Textbook of Traumatic Brain Injury.* 3rd ed. American Psychiatric Association Publishing; 2019.

Belanger HG, Lange RT, Bailie J, et al. Interpreting change on the neurobehavioral symptom inventory and the PTSD checklist in military personnel. *Clin Neuropsychol.* 2016;30(7):1063-1073. <https://doi.org/10.1080/13854046.2016.1193632>

Belanger HG, Silva MA, Donnell AJ, McKenzie-Hartman T, Lamberty GJ, Vanderploeg RD. Utility of the Neurobehavioral Symptom Inventory as an outcome measure: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2017;32(1):46-54. <https://doi.org/10.1097/HTR.0000000000000208>

Bell KR, Bushnik T, Dams-O'Connor K, et al. Sleep after TBI: how the TBI Model Systems have advanced the field. *NeuroRehabilitation.* 2018;43(3):287-296. <https://doi.org/10.3233/NRE-182538>

Bogner J, French LM, Lange RT, Corrigan JD. Pilot study of traumatic brain injury and alcohol misuse among injured service members. *Brain Inj.* 2015;29(7-8):905-914. <https://doi.org/10.3109/02699052.2015.1005136>

Brickell TA, Cotner BA, French LM, et al. Severity of military traumatic brain injury influences caregiver health-related quality of life. *Rehabil Psychol.* 2020;65(4):377-389. <https://doi.org/10.1037/rep0000306>

Brickell TA, French LM, Gartner RL, et al. Factors related to perceived burden among caregivers of service members/veterans following TBI. *Rehabil Psychol.* 2019;64(3):307-319. <https://doi.org/10.1037/rep0000272>

Brickell TA, French LM, Lange RT. Three-year outcome following moderate-to-severe TBI in U.S. military service members: a descriptive cross-sectional study. *Mil Med.* 2014;179(8):839-848. <https://doi.org/10.7205/MILMED-D-14-00016>

Brickell TA, French LM, Lippa SM, Lange RT. Burden among caregivers of service members and veterans following traumatic brain injury. *Brain Inj.* 2018;32(12):1541-1548. <https://doi.org/10.1080/02699052.2018.1503328>

Brickell TA, French LM, Lippa SM, Lange RT. Characteristics and health outcomes of post-9/11 caregivers of US service members and veterans following traumatic brain injury. *J Head Trauma Rehabil.* 2018;33(2):133-145. <https://doi.org/10.1097/htr.0000000000000384>

Brickell TA, French LM, Lippa SM, Lange RT. The impact of deployment and traumatic brain injury on the health and behavior of children of US military service members and veterans. *Clin Child Psychol Psychiatry.* 2018;23(3):425-441. <https://doi.org/10.1177/1359104517740405>

Brickell TA, French LM, Lippa SM, Wright MM, Lange RT. Caring for a service member or veteran following traumatic brain injury influences caregiver mental health. *Mil Psychol.* 2020;32(4):341-351. <https://doi.org/10.1080/08995605.2020.1754149>

Brickell TA, French LM, Sullivan JK, Varbedian NV, Wright MM, Lange RT. Unhealthy family functioning is associated with health-related quality of life among military spouse caregivers. *Psychol Trauma.* 2022;14(4):587-596. <https://doi.org/10.1037/tra0001055>

Brickell TA, French LM, Varbedian NV, et al. Relationship satisfaction among spouse caregivers of service members and veterans with comorbid mild traumatic brain injury and post-traumatic stress disorder. *Fam Process.* 2022;61(4):1525-1540. <https://doi.org/10.1111/famp.12731>

Brickell TA, French LM, Wright MM, et al. Family caregivers of service members in United States Department of Defense health care report impairment in longitudinal health outcomes. *Psychol Trauma.* 2025;17(2):406-415. <https://doi.org/10.1037/tra0001712>

Brickell TA, Ivins BJ, Wright MM, et al. A dyad approach to understanding intimate partner and family distress as risk factors for poor warfighter brain health following mild traumatic brain injury in military couples. *J Head Trauma Rehabil.* Published online May 21, 2025. <https://doi.org/10.1097/HTR.0000000000001060>

Brickell TA, Ivins BJ, Wright MM, et al. Intimate partner distress is strongly associated with worse warfighter brain health following mild traumatic brain injury. *Psychol Trauma.* Published online April 7, 2025. <https://doi.org/10.1037/tra0001889>

Brickell TA, Ivins BJ, Wright MM, French LM, Lange RT. Longitudinal health outcomes in caregivers of military members with traumatic brain injury. *Rehabil Psychol.* 2024;69(2):135-144. <https://doi.org/10.1037/rep0000522>

Brickell TA, Ivins BJ, Wright MM, Sullivan JK, French LM, Lange RT. A dyad approach to understanding relationship satisfaction and health outcomes in military couples following service member and veteran traumatic brain injury. *Front Psychiatry.* 2025;16:1465801. <https://doi.org/10.3389/fpsyg.2025.1465801>

Brickell TA, Lange RT, Chatzisarantis NL. Applying test operating characteristics to measures of exercise motivation: a primer. *Br J Psychol.* 2010;101(Pt 2):345-360. <https://doi.org/10.1348/000712609X466379>

Brickell TA, Lange RT, French LM. Health-related quality of life within the first 5 years following military-related concurrent mild traumatic brain injury and polytrauma. *Mil Med.* 2014;179(8):827-838. <https://doi.org/10.7205/MILMED-D-13-00506>

Brickell TA, Lippa SM, French LM, et al. Service needs and health outcomes among caregivers of service members and veterans following TBI. *Rehabil Psychol.* 2019;64(1):72-86. <https://doi.org/10.1037/rep0000249>

Brickell TA, Lippa SM, French LM, Kennedy JE, Bailie JM, Lange RT. Female service members and symptom reporting following combat and non-combat related mild traumatic brain injury. *J Neurotrauma.* 2017;34(2):300-312. <https://doi.org/10.1089/neu.2016.4403>

Brickell TA, Lippa SM, Wright MM, et al. Is traumatic brain injury severity in service members and veterans related to health-related quality of life in their caregivers? *J Head Trauma Rehabil.* 2022;37(6):338-349. <https://doi.org/10.1097/ht.0000000000000802>

Brickell TA, Reid MW, French LM, et al. Factor analysis of the Caregiver Appraisal Scale in military TBI. *Rehabil Psychol.* 2019;64(3):366-376. <https://doi.org/10.1037/rep0000270>

Brickell TA, Wright MM, Baschenis SM, Lange RT, Sullivan JK and French LM. The Family Wellness Program: a bench to bedside translation of behavioral and social science research into a clinical program for intimate partners of warfighters following traumatic brain injury. *Front Health Serv.* 2025;5:1575781. doi: 10.3389/frhs.2025.1575781

Brickell TA, Wright MM, Ferdosi H, French LM, Lange RT. Pain interference and health-related quality of life in caregivers of service members and veterans with traumatic brain injury and mental health comorbidity. *Qual Life Res.* 2022;31(10):3031-3039. <https://doi.org/10.1007/s11136-022-03153-8>

Brickell TA, Wright MM, Lippa SM, et al. Family risk factors are related to warfighter brain health: a dyad study. *Rehabil Psychol.* Published online March 20, 2025. <https://doi.org/10.1037/rep0000608>

Brickell TA, Wright MM, Lippa SM, et al. Resilience is associated with health-related quality of life in caregivers of service members and veterans following traumatic brain injury. *Qual Life Res.* 2020;29(10):2781-2792. <https://doi.org/10.1007/s11136-020-02529-y>

Brickell TA, Wright MM, Sullivan JK, et al. Health outcomes in caregivers of service members and veterans with traumatic brain injury enrolled in the U.S. Veterans Affairs Caregiver Support Program. *Psychol Serv.* 2024;21(3):635-648. <https://doi.org/10.1037/ser0000771>

Brickell TA, Wright MM, Sullivan JK, et al. Low resilience is associated with worse health-related quality of life in caregivers of service members and veterans with traumatic brain injury: a longitudinal study. *Qual Life Res.* 2024;33(8):2197-2206. <https://doi.org/10.1007/s11136-024-03680-6>

Brickell TA, Wright MM, Sullivan JK, et al. Health outcomes before and during the COVID-19 pandemic in caregivers of service members and veterans with traumatic brain injury. *Qual Life Res.* 2023;32(12):3463-3474. <https://doi.org/10.1007/s11136-023-03491-1>

Brickell TA, Wright MM, Sullivan JK, et al. Caregiver sleep impairment and service member and veteran adjustment following traumatic brain injury is related to caregiver health-related quality of life. *J Clin Sleep Med.* 2022;18(11):2577-2588. <https://doi.org/10.5664/jcsm.10164>

Brickell TA, Wright MM, Sullivan JK, French LM, Lange RT. Longitudinal relationship satisfaction and family functioning in intimate partner caregivers of service members and veterans with traumatic brain injury. Manuscript in progress.

Brickell TA, Wright MM, Sullivan JK, Varbedian NV, French LM, Lange RT. Longitudinal symptom trajectories and risk factors for psychological distress in children of service members and veterans following traumatic brain injury. Manuscript in progress.

Brown RM, Tang X, Dreer LE, et al. Change in body mass index within the first-year post-injury: a VA Traumatic Brain Injury (TBI) Model Systems study. *Brain Inj.* 2018;32(8):986-993. <https://doi.org/10.1080/02699052.2018.1468575>

Carlozzi NE, Boileau NR, Hanks RA, Sander AM, Nakase-Richardson R, Massengale JP. Sleep impairment is related to health-related quality of life among caregivers of lower-functioning traumatic brain injury survivors. *Rehabil Psychol.* 2020;65(4):443-454. doi:10.1037/rep0000334

Carlozzi NE, Boileau, NR, Kallen MA, et al. Reliability and validity data to support the clinical utility of the Traumatic Brain Injury Caregiver Quality of Life (TBI-CareQOL). *Rehabil Psychol.* 2020;65(4):323-336. <https://doi.org/10.1037/rep0000295>

Carlozzi NE, Brickell TA, French LM, et al. Caring for our wounded warriors: a qualitative examination of health-related quality of life in caregivers of individuals with military-related traumatic brain injury. *J Rehabil Res Dev.* 2016;53(6):669-680. <https://doi.org/10.1682/JRRD.2015.07.0136>

Carlozzi NE, Choi SW, Wu Z, et al. The reliability and validity of the TBI-CareQOL system in four diverse caregiver groups. *J Patient Rep Outcomes*. 2023;7(1):57. <https://doi.org/10.1186/s41687-023-00602-x>

Carlozzi NE, Hanks R, Lange RT, et al. Understanding health-related quality of life in caregivers of civilians and service members/veterans with traumatic brain injury: establishing the reliability and validity of PROMIS mental health measures. *Arch Phys Med Rehabil*. 2019;100(4S):S94-S101. <https://doi.org/10.1016/j.apmr.2018.05.021>

Carlozzi NE, Ianni PA, Lange RT, et al. Understanding health-related quality of life of caregivers of civilians and service members/veterans with traumatic brain injury: establishing the reliability and validity of PROMIS social health measures. *Arch Phys Med Rehabil*. 2019;100(4S):S110-S118. <https://doi.org/10.1016/j.apmr.2018.06.026>

Carlozzi NE, Ianni PA, Tulsky DS, et al. Understanding health-related quality of life in caregivers of civilians and service members/veterans with traumatic brain injury: establishing the reliability and validity of PROMIS Fatigue and Sleep Disturbance item banks. *Arch Phys Med Rehabil*. 2019;100(4S):S102-S109. <https://doi.org/10.1016/j.apmr.2018.05.020>

Carlozzi NE, Kallen MA, Brickell TA, et al. Measuring emotional suppression in caregivers of adults with traumatic brain injury. *Rehabil Psychol*. 2020;65(4):455-470. <https://doi.org/10.1037/rep0000291>

Carlozzi NE, Kallen MA, Hanks R, et al. The development of a new computer adaptive test to evaluate feelings of being trapped in caregivers of individuals with traumatic brain injury: TBI-CareQOL Feeling Trapped item bank. *Arch Phys Med Rehabil*. 2019;100(4S):S43-S51. <https://doi.org/10.1016/j.apmr.2018.06.025>

Carlozzi NE, Kallen MA, Hanks R, et al. The TBI-CareQOL measurement system: development and preliminary validation of health-related quality of life measures for caregivers of civilians and service members/veterans with traumatic brain injury. *Arch Phys Med Rehabil*. 2019;100(4S):S1-S12. <https://doi.org/10.1016/j.apmr.2018.08.175>

Carlozzi NE, Kallen MA, Ianni PA, et al. The development of a new computer adaptive test to evaluate strain in caregivers of individuals with TBI: TBI-CareQOL Caregiver Strain. *Arch Phys Med Rehabil*. 2019;100(4S):S13-S21. <https://doi.org/10.1016/j.apmr.2018.05.033>

Carlozzi NE, Kallen MA, Ianni PA, et al. The development of two new computer adaptive tests to evaluate feelings of loss in caregivers of individuals with traumatic brain injury: TBI-CareQOL Feelings of Loss-Self and Feelings of Loss-Person with Traumatic Brain Injury. *Arch Phys Med Rehabil*. 2019;100(4S):S31-S42. <https://doi.org/10.1016/j.apmr.2018.05.026>

Carlozzi NE, Kallen MA, Sander AM, et al. The development of a new computer adaptive test to evaluate anxiety in caregivers of individuals with traumatic brain injury: TBI-CareQOL Caregiver-Specific Anxiety. *Arch Phys Med Rehabil*. 2019;100(4S):S22-S30. <https://doi.org/10.1016/j.apmr.2018.05.027>

Carlozzi NE, Kratz AL, Sander AM, et al. Health-related quality of life in caregivers of individuals with traumatic brain injury: development of a conceptual model. *Arch Phys Med Rehabil.* 2015;96(1):105-113. <https://doi.org/10.1016/j.apmr.2014.08.021>

Carlozzi NE, Lange RT, Boileau NR, et al. TBI-CareQOL family disruption: family disruption in caregivers of persons with TBI. *Rehabil Psychol.* 2020;65(4):390-400. <https://doi.org/10.1037/rep0000297>

Carlozzi NE, Lange RT, French LM, et al. TBI-CareQOL military health care frustration in caregivers of service members/veterans with traumatic brain injury. *Rehabil Psychol.* 2020;65(4):360-376. <https://doi.org/10.1037/rep0000305>

Carlozzi NE, Lange RT, French LM, et al. Understanding health-related quality of life in caregivers of civilians and service members/veterans with traumatic brain injury: reliability and validity data for the TBI-CareQOL measurement system. *Arch Phys Med Rehabil.* 2019;100(4S):S85-S93. <https://doi.org/10.1016/j.apmr.2018.05.034>

Carlozzi NE, Lange RT, French LM, Sander AM, Freedman J, Brickell TA. A latent content analysis of barriers and supports to healthcare: perspectives from caregivers of service members and veterans with military-related traumatic brain injury. *J Head Trauma Rehabil.* 2018;33(5):342-353. <https://doi.org/10.1097/HTR.0000000000000373>

Carlozzi NE, Lange RT, Kallen MA, et al. Assessing vigilance in caregivers after traumatic brain injury: TBI-CareQOL Caregiver Vigilance. *Rehabil Psychol.* 2020;65(4):418-431. <https://doi.org/10.1037/rep0000302>

Ching D, Cotner B, Cruz A, Ryan JL, Nakase-Richardson R. Culture shift within the Department of Defense regarding brain injury detection and treatment. Presented at: Annual Military Health System Research Symposium; August 26, 2024; Kissimmee, FL.

Ching D, Tang X, Noyes ET, et al. Comorbidity burden contributes to community reintegration and employment after traumatic brain injury: a VA TBI Model Systems study. Poster presented at: American Congress of Rehabilitation Medicine 96th Annual Conference; November 5-8, 2019; Chicago, IL.

Corrigan JD, Whiteneck G, Mellick D. Perceived needs following traumatic brain injury. *J Head Trauma Rehabil.* 2004;19(3):205-216. <https://doi.org/10.1097/00011199-200405000-00002>

Cotner BA, Nakase-Richardson R, O'Connor DR, et al. Barriers and facilitators to accessing rehabilitation health care: a Veterans Affairs Traumatic Brain Injury Model Systems qualitative study. *Arch Phys Med Rehabil.* 2023;104(3):380-389. <https://doi.org/10.1016/j.apmr.2022.09.020>

Dams-O'Connor K, Mellick D, Dreer LE, et al. Rehospitalization over 10 years among survivors of TBI: a National Institute on Disability, Independent Living, and Rehabilitation Research Traumatic Brain Injury Model Systems study. *J Head Trauma Rehabil.* 2017;32(3):147-157. <https://doi.org/10.1097/htr.0000000000000263>

Department of Defense. *Report to Congress on Eleven-Year Update: Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM.* May 4, 2021. <https://www.health.mil/Reference-Center/Reports/2021/05/04/Longitudinal-Study-on-Traumatic-Brain-Injury-Incurred-by-Members-of-the-Armed-Forces-in-OIF-OEF>

Department of Defense. *Report to Congress on Seven-Year Update: Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM.* July 19, 2017. <https://www.health.mil/Reference-Center/Reports/2017/07/19/Longitudinal-Study-on-Traumatic-Brain-Injury-Incurred-by-Members-of-the-Armed-Forces>

Department of Defense. *Report to Congress on Three-Year Update: Longitudinal Study on Traumatic Brain Injury Incurred by Members of the Armed Forces in Operation IRAQI FREEDOM and Operation ENDURING FREEDOM.* June 18, 2013. <https://www.health.mil/Reference-Center/Reports/2013/06/18/3-Year-Update-Longitudinal-Study-on-TBI-Incurred-by-Members-of-the-Armed-Forces>

Dieter JN, Engel SD. Traumatic brain injury and posttraumatic stress disorder: comorbid consequences of war. *Neurosci Insights.* 2019;14:1179069519892933. <https://doi.org/10.1177/1179069519892933>

Dillahunt-Aspilla C, Nakase-Richardson R, Hart T, et al. Predictors of employment outcomes in veterans with traumatic brain injury: a VA Traumatic Brain Injury Model Systems study. *J Head Trauma Rehabil.* 2017;32(4):271-282. <https://doi.org/10.1097/HTR.0000000000000275>

Dillahunt-Aspilla C, Pugh M, Cotner BA, et al. Employment stability in veterans and service members with traumatic brain injury: a Veterans Administration Traumatic Brain Injury Model Systems study. *Arch Phys Med Rehabil.* 2018;99(S2):S23-S32. <https://doi.org/10.1016/j.apmr.2017.05.012>

DiSanato D, Kumar RG, Juengst SB, et al. Employment stability in the first 5 years after moderate-to-severe traumatic brain injury. *Arch Phys Med Rehabil.* 2019;100(3):412-421. <https://doi.org/10.1016/j.apmr.2018.06.022>

Dismuke-Greer CE, Almeida E, Ryan JL, Nakase-Richardson R. Department of Defense military treatment facility and community care costs after traumatic brain injury in service members treated in Veterans Affairs Polytrauma Rehabilitation Centers: a VA TBI Model Systems study. *J. Head Trauma Rehabil.* 2025;40(4):E300-E307. <https://doi.org/10.1097/HTR.0000000000001028>

Dismuke-Greer CE, Almeida EJ, Silva MA, et al. Effect of post-traumatic amnesia duration on traumatic brain injury (TBI) first year hospital costs: a Veterans Affairs Traumatic Brain Injury Model Systems study. *Arch Phys Med Rehabil.* 2023 Jul;104(7):1007-1015.
<https://doi.org/10.1016/j.apmr.2023.03.023>

Dreer LE, Tang X, Nakase-Richardson R, et al. Suicide and traumatic brain injury: a review by clinical researchers from the National Institute for Disability and Independent Living Rehabilitation Research (NIDILRR) and Veterans Health Administration Traumatic Brain Injury Model Systems. *Curr Opin Psychol.* 2018;22:73-78.
<https://doi.org/10.1016/j.copsyc.2017.08.030>

Dretsch MN, Williams K, Staver T, et al. Evaluating the clinical utility of the Validity-10 for detecting amplified symptom reporting for patients with mild traumatic brain injury and comorbid psychological health conditions. *Appl Neuropsychol Adult.* 2017;24(4):376-380.
<https://doi.org/10.1080/23279095.2016.1220947>

DuVall SL, Matheny ME, Ibragimov IR, et al. A tale of two databases: the DoD and VA Infrastructure for Clinical Intelligence (DaVINCI). *Stud Health Technol Inform.* 2019;264:1660-1661. <https://doi.org/10.3233/SHTI190584>

Edwards KA, Lange RT, Lippa SM, Brickell TA, Gill JM, French LM. Serum GFAP, NfL, and tau concentrations are associated with worse neurobehavioral functioning following mild, moderate, and severe TBI: a cross-sectional multiple-cohort study. *Front Neurol.* 2024;14:1223960. <https://doi.org/10.3389/fneur.2023.1223960>

Edwards KA, Lange RT, Lippa SM, et al. Association of military occupational risk blast exposure with serum biomarkers in service members and veterans with traumatic brain injury: a preliminary analysis. Poster presented at: Annual Military Health System Research Symposium; August 14-17, 2023; Kissimmee, FL.

Eggleston B, Dismuke-Gree CE, Pogoda, TK, et al. A prediction model of military combat and training exposures on VA service-connected disability: a CENC study. *Brain Inj.* 2019;33(13-14):1602-1614. <https://doi.org/10.1080/02699052.2019.1655793>

Farrell-Carnahan L, Barnett S, Lamberty G, et al. Insomnia symptoms and behavioral health symptoms in veterans 1 year after traumatic brain injury. *Brain Inj.* 2015;29(12):1400-1408.
<https://doi.org/10.3109/02699052.2015.1063161>

Finn JA, Almeida E, Venkatesan U, Dreer L, Bombardier C. Pre- and post-injury mental health conditions in service members and veterans with TBI: a VA TBI Model Systems study. Submitted for publication.

Finn JA, Almeida EJ, Venkatesan U, et al. Mental health conditions in service members and veterans with TBI: a VA TBI Model Systems study. Manuscript in progress.

Finn JA, Klocksieben FA, Smith AN, et al. Family needs after traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2022;37(6):327-337.
<https://doi.org/10.1097/htr.0000000000000799>

Finn JA, Lamberty GJ, Tang X, Sailors ME, Stevens LF, Kretzmer T. Postrehabilitation mental health treatment utilization in veterans with traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2018;33(4):E1-9.
<https://doi.org/10.1097/HTR.0000000000000357>

French LM, Lange RT, Brickell TA. Subjective cognitive complaints and neuropsychological test performance following military-related traumatic brain injury. *J Rehabil Res Dev.* 2014;51(6):933-950. https://www.researchgate.net/publication/269188741_Subjective_cognitive_complaints_and_neuropsychological_test_performance_following_military-related_traumatic_brain_injury

French LM, Brickell TA, Lippa SM, et al. Clinical relevance of subthreshold PTSD versus full criteria PTSD following traumatic brain injury in U.S. service members and veterans. *J Affect Disord.* 2024;358:408-415. <https://doi.org/10.1016/j.jad.2024.05.015>

French LM, Lange RT, Iverson GL, Ivins B, Marshall K, Schwab K. Influence of bodily injuries on symptom reporting following uncomplicated mild traumatic brain injury in US military service members. *J Head Trauma Rehabil.* 2012;27(1):63-74.
<https://doi.org/10.1097/HTR.0b013e3182248344>

French LM, Lange RT, Marshall K, et al. Influence of the severity and location of bodily injuries on post-concussive and combat stress symptom reporting after military-related concurrent mild traumatic brain injury and polytrauma. *J Neurotrauma.* 2014;31(19):1607-1616.
<https://doi.org/10.1089/neu.2014.3401>

Garcia A, Kretzmer TS, Dams-O'Connor K, et al. Health conditions among Special Operations Forces versus conventional military service members: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2022;37(4):E292-E298. <https://doi.org/10.1097/htr.0000000000000737>

Garcia A, Miles SR, Reljic T, et al. Neurobehavioral symptoms in U.S. Special Operations Forces in rehabilitation after traumatic brain injury: a TBI Model Systems study. *Mil Med.* 2022;187(11-12):1412-1421. <https://doi.org/10.1093/milmed/usab347>

Garden N, Sullivan KA, Lange RT. The relationship between personality characteristics and postconcussion symptoms in a non-clinical sample. *Neuropsychology.* 2010;24(2):168-175.
<https://doi.org/10.1037/a0017431>

Gause LR, Finn JA, Lamberty GJ, et al. Predictors of satisfaction with life in veterans after traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2017;32(4):255-263. <https://doi.org/10.1097/HTR.0000000000000309>

Gerber LH, Bush H, Cai C, et al. Scoping review of clinical rehabilitation research pertaining to traumatic brain injury: 1990-2016. *NeuroRehabilitation*. 2019;44(2):207-215.
<https://doi.org/10.3233/NRE-182599>

Giacino JT, Katz DI, Schiff ND, et al. Comprehensive Systematic Review Update Summary: Disorders of Consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. *Arch Phys Med Rehabil*. 2018;99(9):1710-1719.
<https://doi.org/10.1016/j.apmr.2018.07.002>

Giacino JT, Katz DI, Schiff ND, et al. Comprehensive Systematic Review Update Summary: Disorders of Consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. *Neurology*. 2018;91(10):461-470.
<https://doi.org/10.1212/WNL.0000000000005928>

Giacino JT, Katz DI, Schiff ND, et al. Practice Guideline Update Recommendations Summary: Disorders of Consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. *Arch Phys Med Rehabil*. 2018;99(9):1699-1709.
<https://doi.org/10.1016/j.apmr.2018.07.001>

Giacino JT, Katz DI, Schiff ND, et al. Practice Guideline Update Recommendations Summary: Disorders of Consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. *Neurology*. 2018;91(10):450-460.
<https://doi.org/10.1212/WNL.0000000000005926>

Gootam PK, Kretzmer TS, McKenzie Hartman T, Nakase-Richardson R, Silva MA, Bajor LA. Assessment and treatment of sleep in mild traumatic brain injury. In: Eapen B, Cifu D, eds. *Concussion: Assessment, Management, and Rehabilitation*. Elsevier; 2020:77-88.

Guedes VA, Lange RT, Lippa SM, et al. Extracellular vesicle neurofilament light is elevated within the first 12-months following traumatic brain injury in a U.S military population. *Sci Rep*. 2022;12(1):4002. <https://doi.org/10.1038/s41598-022-05772-0>

Hamilton JA, Ketchum JM, Hammond FM, et al. Comparison of Veterans Affairs and NIDILRR Traumatic Brain Injury Model Systems participants with disorders of consciousness. *Brain Inj*. 2023;37(4):282-292. <https://doi.org/10.1080/02699052.2022.2158226>

Hammond FM, Giacino JT, Nakase-Richardson R, et al. Disorders of consciousness due to traumatic brain injury: functional status ten years post-injury. *J Neurotrauma*. 2019;36(7):1136-1146. <https://doi.org/10.1089/neu.2018.5954>

Hanks RA, Boileau NR, Norman AL, Nakase-Richardson R, Mariouw KH, Carlozzi NE. Spirituality and outcomes in caregivers of persons with traumatic brain injury (TBI). *Rehabil Psychol*. 2020;65(4):347-359. <https://doi.org/10.1037/rep0000304>

Harrison AG, Armstrong IT, Harrison LE, Lange RT, Iverson GL. Comparing Canadian and American normative scores on the Wechsler Adult Intelligence Scale-Fourth Edition. *Arch Clin Neuropsychol*. 2014;29(8):737-746. <https://doi.org/10.1093/arclin/acu048>

Holcomb EM, Schwartz DJ, McCarthy M, Thomas B, Barnett SD, Nakase-Richardson R. Incidence, characterization, and predictors of sleep apnea in consecutive brain injury rehabilitation admissions. *J Head Trauma Rehabil*. 2016;31(2):82-100. <https://doi.org/10.1097/HTR.0000000000000230>

Holcomb EM, Towns S, Kamper JE, et al. The relationship between sleep-wake cycle disturbance and trajectory of cognitive recovery during acute traumatic brain injury. *J Head Trauma Rehabil*. 2016;31(2):108-116. <https://doi.org/10.1097/HTR.0000000000000206>

Iverson GL, Brooks BL, Ashton VL, Lange RT. Interview versus questionnaire symptom reporting in people with the postconcussion syndrome. *J Head Trauma Rehabil*. 2010;25(1):23-30. <https://doi.org/10.1097/HTR.0b013e3181b4b6ab>

Iverson GL, Hakulinen U, Wäljas M, et al. To exclude or not to exclude: white matter hyperintensities in diffusion tensor imaging research. *Brain Inj*. 2011;25(13-14):1325-1332. <https://doi.org/10.3109/02699052.2011.608409>

Iverson GL, Lange RT, Brooks BL, Rennison VL. "Good old days" bias following mild traumatic brain injury. *Clin Neuropsychol*. 2010;24(1):17-37. <https://doi.org/10.1080/13854040903190797>

Iverson GL, Lange RT, Wäljas M, et al. Outcome from complicated versus uncomplicated mild traumatic brain injury. *Rehabil Res Pract*. 2012;2012:415740. <https://doi.org/10.1155/2012/415740>

Ivins BJ, Lange RT, Cole WR, Kane R, Schwab KA, Iverson GL. Using base rates of low scores to interpret the ANAM4 TBI-MIL battery following mild traumatic brain injury. *Arch Clin Neuropsychol*. 2015;30(1):26-38. <https://doi.org/10.1093/arclin/acu072>

Kamper JE, Garofano J, Schwartz DJ, et al. Concordance of actigraphy with polysomnography in traumatic brain injury neurorehabilitation admissions. *J Head Trauma Rehabil*. 2016;31(2):117-125. <https://doi.org/10.1097/HTR.0000000000000215>

Keelan RE, Mahoney EJ, Sherer M, et al. Neuropsychological characteristics of the confusional state following traumatic brain injury. *J Int Neuropsychol Soc.* 2019;25(3):302-313. <https://doi.org/10.1017/S1355617718001157>

Kennedy JE, Cooper DB, Reid MW, Tate DF, Lange RT. Profile analyses of the Personality Assessment Inventory following military-related traumatic brain injury. *Arch Clin Neuropsychol.* 2015;30(3):236-247. <https://doi.org/10.1093/arclin/acv014>

Klyce DW, Perrin PB, Ketchum JM, et al. Suicide attempts and ideation among veterans/service members and non-veterans over 5 years following traumatic brain injury: a combined NIDILRR and VA TBI Model Systems study. *J Head Trauma Rehabil.* 2024;39(3):183-195. <https://doi.org/10.1097/htr.0000000000000902>

Klyce DW, Stromberg KA, Walker WC, et al. Depression as a predictor of long-term employment outcomes among individuals with moderate-to-severe traumatic brain injury. *Arch Phys Med Rehabil.* 2019;100(10):1837-1843. <https://doi.org/10.1016/j.apmr.2019.06.009>

Kratz AL, Sander AM, Brickell TA, Lange RT, Carozzi NE. Traumatic brain injury caregivers: a qualitative analysis of spouse and parent perspectives on quality of life. *Neuropsychol Rehabil.* 2017;27(1):16-37. <https://doi.org/10.1080/09602011.2015.1051056>

Kreutzer JS, Marwitz JH, Klyce DW, et al. Family needs on an inpatient brain injury rehabilitation unit: a quantitative assessment. *J Head Trauma Rehabil.* 2018;33(4):228-236. <https://doi.org/10.1097/HTR.0000000000000390>

Kuchinsky SE, Eitel MM, Lange RT, et al. Objective and subjective auditory effects of traumatic brain injury and blast exposure in service members and veterans. *Front Neurol.* 2020;11:613. <https://doi.org/10.3389/fneur.2020.00613>

Kumar RG, Klyce D, Nakase-Richardson R, Pugh MJ, Walker WC, Dams-O'Connor K. Associations of military service history and health outcomes in the first five years after traumatic brain injury. *J Neurotrauma.* 2023;40(11-12):1173-1186. <https://doi.org/10.1089/neu.2022.0340>

Lamberty GJ, Nakase-Richardson R, Farrell-Carnahan L, et al. Development of a traumatic brain injury model system within the Department of Veterans Affairs Polytrauma System of Care. *J Head Trauma Rehabil.* 2014;29(3):E1-E7. <https://doi.org/10.1097/HTR.0b013e31829a64d1>

Lange RT, Brickell TA, Bailie JM, Tulsky DS, French LM. Clinical utility and psychometric properties of the Traumatic Brain Injury Quality of Life Scale (TBI-QOL) in US military service members. *J Head Trauma Rehabil.* 2016;31(1):62-78. <https://doi.org/10.1097/HTR.0000000000000149>

Lange RT, Brickell TA, French LM. Examination of the Mild Brain Injury Atypical Symptom Scale and the Validity-10 Scale to detect symptom exaggeration in US military service members. *J Clin Exp Neuropsychol.* 2015;37(3):325-337. <https://doi.org/10.1080/13803395.2015.1013021>

Lange RT, Brickell TA, French LM, et al. Risk factors for postconcussion symptom reporting after traumatic brain injury in U.S. military service members. *J Neurotrauma*. 2013;30(4):237-246. <https://doi.org/10.1089/neu.2012.2685>

Lange RT, Brickell TA, French LM, et al. Neuropsychological outcome from uncomplicated mild, complicated mild, and moderate traumatic brain injury in US military personnel. *Arch Clin Neuropsychol*. 2012;27(5):480-494. <https://doi.org/10.1093/arclin/acs059>

Lange RT, Brickell TA, Iverson GL, Parkinson GW, Bhagwat A, French LM. 12-month outcome from mild traumatic brain injury and polytrauma in U.S. military service members. In Wiederhold K, ed. *NATO Science for Peace and Security Series - Series E: Human and Societal Dynamics. Coping with Blast-Related Traumatic Brain Injury in Returning Troops*. Vol 86. IOS Press; 2011:171-186.

Lange RT, Brickell TA, Ivins B, Vanderploeg R, French LM. Variable, not always persistent, postconcussion symptoms after mild TBI in U.S. military service members: a five-year cross-sectional outcome study. *J Neurotrauma*. 2013;30(11):958-969. <https://doi.org/10.1089/neu.2012.2743>

Lange RT, Brickell TA, Kennedy JE, et al. Factors influencing postconcussion and posttraumatic stress symptom reporting following military-related concurrent polytrauma and traumatic brain injury. *Arch Clin Neuropsychol*. 2014;29(4):329-347. <https://doi.org/10.1093/arclin/acu013>

Lange RT, Brickell TA, Lippa SM, French LM. Clinical utility of the Neurobehavioral Symptom Inventory validity scales to screen for symptom exaggeration following traumatic brain injury. *J Clin Exp Neuropsychol*. 2015;37(8):853-862. <https://doi.org/10.1080/13803395.2015.1064864>

Lange RT, Brubacher JR, Iverson GL, Procyshyn RM, Mitrovic, S. Differential effects of alcohol intoxication on S100B levels following traumatic brain injury. *J Trauma*. 2010;68(5):1065-1071. <https://doi.org/10.1097/TA.0b013e3181bb9890>

Lange RT, Edmed SL, Sullivan KA, French LM, Cooper DB. Utility of the Mild Brain Injury Atypical Symptoms Scale to detect symptom exaggeration: an analogue simulation study. *J Clin Exp Neuropsychol*. 2013;35(2):192-209. <https://doi.org/10.1080/13803395.2012.761677>

Lange RT, French LM, Bailie JM, et al. Clinical utility of PTSD, resilience, sleep, and blast as risk factors to predict poor neurobehavioral functioning following traumatic brain injury: a longitudinal study in U.S. military service members. *Qual Life Res*. 2022;31(8):2411-2422. <https://doi.org/10.1007/s11136-022-03092-4>

Lange RT, French LM, Lippa SM, Bailie JM, Brickell TA. Posttraumatic stress disorder is a stronger predictor of long-term neurobehavioral outcomes than traumatic brain injury severity. *J Trauma Stress*. 2020;33(3):318-329. <https://doi.org/10.1002/jts.22480>

Lange RT, French LM, Lippa SM, et al. Service needs and neurobehavioral functioning following traumatic brain injury in U.S. military personnel. *Rehabil Psychol.* 2025;70(1):63-74. <https://doi.org/10.1037/rep0000556>

Lange RT, French LM, Lippa SM, et al. High lifetime blast exposure using the Blast Exposure Threshold Survey is associated with worse warfighter brain health following mild traumatic brain injury. *J Neurotrauma.* 2024;41(1-2):186-198. <https://doi.org/10.1089/neu.2023.0133>

Lange RT, French LM, Lippa SM, et al. Risk factors for the presence and persistence of posttraumatic stress symptoms following traumatic brain injury in U.S. service members and veterans. *J Trauma Stress.* 2023;36(1):144-156. <https://doi.org/10.1002/jts.22892>

Lange RT, Gill JM, Lippa SM, et al. Elevated serum tau and UCHL-1 concentrations within 12 months of injury predict neurobehavioral functioning 2 or more years following traumatic brain injury: a longitudinal study. *J Head Trauma Rehabil.* 2024;39(3):196-206. <https://doi.org/10.1097/htr.0000000000000877>

Lange RT, Iverson GL, Brickell TA, et al. Clinical utility of the Conners' Continuous Performance Test-II to detect poor effort in U.S. military personnel following traumatic brain injury. *Psychol Assess.* 2013;25(2):339-352. <https://doi.org/10.1037/a0030915>

Lange RT, Iverson GL, Brooks BL, Rennison, VL. Influence of poor effort on self-reported symptoms and neurocognitive test performance following mild traumatic brain injury. *J Clin Exp Neuropsychol.* 2010;32(9):961-972. <https://doi.org/10.1080/13803391003645657>

Lange RT, Iverson GL, Brubacher JR. Clinical utility of the protein S100B to evaluate traumatic brain injury in the presence of acute alcohol intoxication. *J Head Trauma Rehabil.* 2012;27(2):123-134. <https://doi.org/10.1097/HTR.0b013e31820e6840>

Lange RT, Iverson GL, Brubacher JR, Franzen MD. Effect of blood alcohol level on Glasgow Coma Scale scores following traumatic brain injury. *Brain Inj.* 2010;24(7-8):919-927. <https://doi.org/10.3109/02699052.2010.489794>

Lange RT, Iverson GL, Brubacher JR, Mädler B, Heran MK. Diffusion tensor imaging findings are not strongly associated with postconcussion disorder 2 months following mild traumatic brain injury. *J Head Trauma Rehabil.* 2012;27(3):188-198. <https://doi.org/10.1097/HTR.0b013e318217f0ad>

Lange RT, Iverson GL, Rose A. Depression strongly influences postconcussion symptom reporting following mild traumatic brain injury. *J Head Trauma Rehabil.* 2011;26(2):127-137. <https://doi.org/10.1097/HTR.0b013e3181e4622a>

Lange RT, Iverson GL, Rose A. Postconcussion symptom reporting and the "good old days" bias following mild traumatic brain injury. *Arch Clin Neuropsychol.* 2010;25(5):442-450. <https://doi.org/10.1093/arclin/acq031>

Lange RT, Lippa SM, Bailie JM, et al. Longitudinal trajectories and risk factors for persistent postconcussion symptom reporting following uncomplicated mild traumatic brain injury in U.S. military service members. *Clin Neuropsychol.* 2020;34(6):1134-1155.
<https://doi.org/10.1080/13854046.2020.1746832>

Lange RT, Lippa SM, Brickell TA, et al. Post-traumatic stress disorder is associated with neuropsychological outcome but not white matter integrity after mild traumatic brain injury. *J Neurotrauma.* 2021;38(1):63-73. <https://doi.org/10.1089/neu.2019.6852>

Lange RT, Lippa SM, Brickell TA, Gill J, French LM. Serum tau, neurofilament light chain, glial fibrillary acidic protein, and ubiquitin carboxyl-terminal hydrolase L1 are associated with the chronic deterioration of neurobehavioral symptoms after traumatic brain injury. *J Neurotrauma.* 2023;40(5-6):482-492. <https://doi.org/10.1089/neu.2022.0249>

Lange RT, Lippa SM, French LM, Brickell TA. Medical comorbidities following mild, moderate, and severe traumatic brain injury. Presented at: Department of Defense and Veterans Affairs Congressional Report Stakeholder and Research Working Meeting; December 2019; Tampa, FL.

Lange RT, Lippa SM, French LM, et al. Long-term neurobehavioural symptom reporting following mild, moderate, severe, and penetrating traumatic brain injury in U.S. military service members. *Neuropsychol Rehabil.* 2020;30(9):1762-1785.
<https://doi.org/10.1080/09602011.2019.1604385>

Lange RT, Merritt VC, Brickell TA, et al. Apolipoprotein E e4 is associated with worse self-reported neurobehavioral symptoms following uncomplicated mild traumatic brain injury in U.S. military service members. *Behav Brain Res.* 2021;415:113491.
<https://doi.org/10.1016/j.bbr.2021.113491>

Lange RT, Pancholi S, Bhagwat A, Anderson-Barnes V, French LM. Influence of poor effort on neuropsychological test performance in U.S. military personnel following mild traumatic brain injury. *J Clin Exp Neuropsychol.* 2012;34(5):453-466.
<https://doi.org/10.1080/13803395.2011.648175>

Lange RT, Pancholi S, Brickell TA, et al. Neuropsychological outcome from blast versus non-blast mild traumatic brain injury in U.S. military service members. *J Int Neuropsychol Soc.* 2012;18(3):595-605. <https://doi.org/10.1017/S1355617712000239>

Lange RT, Panenka WJ, Shewchuk JR, et al. Diffusion tensor imaging findings and symptom reporting six weeks following mild traumatic brain injury. *Arch Clin Neuropsychol.* 2015;30(1):7-25. <https://doi.org/10.1093/arclin/acu060>

Lange RT, Shewchuk JR, Heran MK, et al. To exclude or not to exclude: further examination of the influence of white matter hyperintensities in diffusion tensor imaging research. *J Neurotrauma.* 2014;31(2):198-205. <https://doi.org/10.1089/neu.2013.2866>

Lange RT, Shewchuk JR, Rauscher A, et al. A prospective study of the influence of acute alcohol intoxication versus chronic alcohol consumption on outcome following traumatic brain injury. *Arch Clin Neuropsychol.* 2014;29(5):478-495. <https://doi.org/10.1093/arclin/acu027>

Lange RT, Sullivan KA, Scott C. Comparison of MMPI-2 and PAI validity indicators to detect feigned depression and PTSD symptom reporting. *Psychiatry Res.* 2010;176(2-3):229-235. <https://doi.org/10.1016/j.psychres.2009.03.004>

Lange RT, Yeh PH, Brickell TA, Lippa SM, French LM. Postconcussion symptom reporting is not associated with diffusion tensor imaging findings in the subacute to chronic phase of recovery in military service members following mild traumatic brain injury. *J Clin Exp Neuropsychol.* 2019;41(5):497-511. <https://doi.org/10.1080/13803395.2019.1585518>

Lippa SM, Axelrod BN, Lange RT. The mild Brain Injury Atypical Symptoms (mBIAS) Scale in a mixed clinical sample. *J Exp Clin Neuropsychol.* 2016;38(7):721-729. <https://doi.org/10.1080/13803395.2016.1161732>

Lippa SM, French LM, Bell RS, Brickell TA, Lange RT. United States military service members demonstrate substantial and heterogeneous long-term neuropsychological dysfunction after moderate, severe, and penetrating traumatic brain injury. *J Neurotrauma.* 2020;37(4):608-617. <https://doi.org/10.1089/neu.2019.6696>

Lippa SM, French LM, Brickell TA, et al. Post-traumatic stress disorder symptoms are related to cognition after complicated mild and moderate traumatic brain injury but not severe and penetrating traumatic brain injury. *J Neurotrauma.* 2021;38(22):3137-3145. <https://doi.org/10.1089/neu.2021.0120>

Lippa SM, Gill J, Brickell TA, French LM, Lange RT. Blood biomarkers relate to cognitive performance years after traumatic brain injury in service members and veterans. *J Int Neuropsychol Soc.* 2021;27(5):508-514. <https://doi.org/10.1017/s1355617720001071>

Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood biomarkers predict future cognitive decline after military-related traumatic brain injury. *Curr Alzheimer Res.* 2022;19(5):351-363. <https://doi.org/10.2174/1567205019666220330144432>

Lippa SM, Lange RT, Bailie JM, Kennedy JE, Brickell TA, French LM. Utility of the Validity-10 scale across the recovery trajectory following traumatic brain injury. *J Rehabil Res Dev.* 2016;53(3):379-390. <https://doi.org/10.1682/JRRD.2015.01.0009>

Lippa SM, Lange RT, Bhagwat A, French LM. Clinical utility of embedded performance validity tests on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) following mild traumatic brain injury. *Appl Neuropsychol Adult.* 2017;24(1):73-80. <https://doi.org/10.1080/23279095.2015.1100617>

Lippa SM, Lange RT, Dalgard CL, et al. APOE is associated with serum tau following uncomplicated mild traumatic brain injury. *Front Neurol.* 2022;13:816625. <https://doi.org/10.3389/fneur.2022.816625>

Lippa SM, Yeh P, Gill J, French LM, Brickell TA, Lange RT. Plasma tau and amyloid are not reliably related to injury characteristics, neuropsychological performance, or white matter integrity in service members with a history of traumatic brain injury. *J Neurotrauma.* 2019;36(14):2190-2199. <https://doi.org/10.1089/neu.2018.6269>

Lippa SM, Yeh PH, Kennedy JE, et al. Lifetime blast exposure is not related to white matter integrity in service members and veterans with and without uncomplicated mild traumatic brain injury. *Neurotrauma Rep.* 2023;4(1):827-837. <https://doi.org/10.1089/neur.2023.0043>

Lippa SM, Yeh PH, Ollinger J, Brickell TA, French LM, Lange RT. White matter integrity relates to cognition in service members and veterans after complicated mild, moderate, and severe traumatic brain injury, but not uncomplicated mild traumatic brain injury. *J Neurotrauma.* 2023;40(3-4):260-273. <https://doi.org/10.1089/neu.2022.0276>

Lusk J, Brenner LA, Betthauser LM, et al. A qualitative study of potential suicide risk factors among Operation Iraqi Freedom/Operation Enduring Freedom soldiers returning to the Continental United States (CONUS). *J Clin Psychol.* 2015;71(9):843-855. <https://doi.org/10.1002/jclp.22164>

Mahoney EJ, Silva MA, Reljic T, et al. Rehabilitation needs at 5 years post-traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2021;36(3):175-185. <https://doi.org/10.1097/htr.0000000000000629>

Malone C, Erler KS, Giacino JT, et al. Participation following inpatient rehabilitation for traumatic disorders of consciousness: a TBI Model Systems study. *Front Neurol.* 2019;10:1314. <https://doi.org/10.3389/fneur.2019.01314>

Martin AM, Pinto SM, Tang X, et al. Associations between early sleep-disordered breathing following moderate-to-severe traumatic brain injury and long-term chronic pain status: a Traumatic Brain Injury Model Systems study. *J Clin Sleep Med.* 2023;19(1):135-143. <https://doi.org/10.5664/jcsm.10278>

Marwitz JH, Perera RA, Klyce DW, et al. Caregiver resilience following traumatic brain injury: findings at six months post-injury. *Rehabil Psychol.* 2023;68(3):281-288. <https://doi.org/10.1037/rep0000503>.

McGarity S, Barnett SD, Lamberty G, et al. Community reintegration problems among veterans and active duty service members with traumatic brain injury. *J Head Trauma Rehabil.* 2017;32(1):34-45. <https://doi.org/10.1097/HTR.0000000000000242>

McIntire KL, Crawford KM, Perrin PB, et al. Factors increasing risk of suicide after traumatic brain injury: a state-of-the-science review of military and civilian studies. *Brain Inj.* 2021;35(2):151-163. <https://doi.org/10.1080/02699052.2020.1861656>

Merritt VC, Lange RT, French LM. Resilience and symptom reporting following mild traumatic brain injury in military service members. *Brain Inj.* 2015;29(11):1325-1336. <https://doi.org/10.3109/02699052.2015.1043948>

Merritt VC, Lange RT, Lippa SM, et al. Apolipoprotein e (APOE) ε4 genotype influences memory performance following remote traumatic brain injury in U.S. military service members and veterans. *Brain Cogn.* 2021;154:105790. <https://doi.org/10.1016/j.bandc.2021.105790>

Miles SR, Brenner LA, Neumann D, et al. Posttraumatic stress disorder symptoms contribute to staff perceived irritability, anger, and aggression after TBI in a longitudinal veteran cohort: a VA TBI Model Systems study. *Arch Phys Med Rehabil.* 2020;101(1):81-88. <https://doi.org/10.1016/j.apmr.2019.07.018>

Miles SR, Klyce D, Garcia A, et al. Chronicity of posttraumatic stress disorder symptoms following traumatic brain injury: a comparison of special operators and conventional forces. *J Spec Oper Med.* 2025;24(4):74-81. <https://doi.org/10.55460/VUM3-FKJO>

Miles SR, Silva MA, Lang B, et al. Sleep apnea and posttraumatic stress after traumatic brain injury (TBI): a Veterans Affairs TBI Model Systems study. *Rehabil Psychol.* 2021;66(4):450-460. <https://doi.org/10.1037/rep0000389>

Moore RA, Lippa SM, Brickell TA, French LM, Lange RT. Clinical utility of WAIS-IV 'Excessive Decline from Premorbid Functioning' scores to detect invalid test performance following traumatic brain injury. *Clin Neuropsychol.* 2020;34(3):512-528. <https://doi.org/10.1080/13854046.2019.1668059>

Myers JR, Solomon NP, Lange RT, et al. Analysis of discourse production to assess cognitive communication deficits following mild traumatic brain injury with and without posttraumatic stress. *Am J Speech Lang Pathol.* 2022;31(1):84-98. https://doi.org/10.1044/2021_AJSLP-20-00281

Nakase-Richardson R. Improving the recognition and treatment of sleep disorders in neurorehabilitation. *Brain Injury Professional.* 2018;14(4):7. Published March 7, 2018. Accessed March 8, 2018. https://issuu.com/braininjuryprofessional/docs/bip_february_2018?e=1121786/58553316

Nakase-Richardson R. Interview with an expert: Dr. Mark Aloia. *Brain Injury Professional.* 2018;14(4): 26-27. Published March 7, 2018. Accessed March 8, 2018. https://issuu.com/braininjuryprofessional/docs/bip_february_2018?e=1121786/58553316

Nakase-Richardson R. Improving the significance and direction of sleep management in traumatic brain injury. *J Head Trauma Rehabil.* 2016;31(2):79-81.
<https://doi.org/10.1097/HTR.0000000000000235>

Nakase-Richardson R, Bogner J, Almeida EA, et al. Sleep apnea is associated with functional outcome during inpatient rehabilitation for moderate to severe traumatic brain injury. Manuscript in progress.

Nakase-Richardson R, Cotner BA, Martin AM, et al. Provider perspectives of facilitators and barriers to reaching and utilizing chronic pain healthcare for persons with traumatic brain injury: a qualitative NIDILRR and VA TBI Model Systems collaborative project. *J Head Trauma Rehabil.* 2024;39(1):E15-E28. <https://doi.org/10.1097/htr.0000000000000923>

Nakase-Richardson R, Dahdah MN, Almeida E, et al. Concordance between current American Academy of Sleep Medicine and Centers for Medicare and Medicare [sic] scoring criteria for obstructive sleep apnea in hospitalized persons with traumatic brain injury: a VA TBI Model System study. *J Clin Sleep Med.* 2020;16(6):879-888. <https://doi.org/10.5664/jcsm.8352>

Nakase-Richardson R, Hoffman JM, Magalang U, et al. Cost-benefit analysis from the payor's perspective for screening and diagnosing obstructive sleep apnea during inpatient rehabilitation for moderate to severe TBI [published correction appears in *Arch Phys Med Rehabil.* 2021;102(3):561]. *Arch Phys Med Rehabil.* 2020;101(9):1497-1508.
<https://doi.org/10.1016/j.apmr.2020.03.020>

Nakase-Richardson R, Schwartz DJ. Sleep apnea and traumatic brain injury. *Brain Injury Professional.* 2018;14(4):8-10. Published March 7, 2018. Accessed March 8, 2018.
https://issuu.com/braininjuryprofessional/docs/bip_february_2018?e=1121786/58553316

Nakase-Richardson R, Schwartz DJ, Drasher-Phillips L, et al. Comparative effectiveness of sleep apnea screening instruments during inpatient rehabilitation following moderate to severe TBI. *Arch Phys Med Rehabil.* 2020;101(2):283-296. <https://doi.org/10.1016/j.apmr.2019.09.019>

Nakase-Richardson R, Schwartz DJ, Ketchum JM, et al. Comparison of diagnostic sleep studies in hospitalized neurorehabilitation patients with moderate to severe traumatic brain injury. *Chest.* 2020;158(4):1689-1700. <https://doi.org/10.1016/j.chest.2020.03.083>

Nakase-Richardson R, Stevens L. Informing the needs of veterans and service members with TBI and their families: leveraging the VA TBI Model System Program of Research. *J Head Trauma Rehabil.* 2017;32(4):215-218. <https://doi.org/10.1097/HTR.0000000000000336>

Nakase-Richardson R, Stevens LF, Tang X, et al. Comparison of the VA and NIDILRR TBI Model System cohorts. *J Head Trauma Rehabil.* 2017;32(4):221-233.
<https://doi.org/10.1097/htr.0000000000000334>

Nakase-Richardson R, Tang X, Noyes ET, et al. Impact of medical comorbidities on rehabilitation outcomes following TBI: a Veterans Affairs Traumatic Brain Injury Model Systems study. Poster presented at: American Congress of Rehabilitation Medicine 96th Annual Conference; November 5-8, 2019; Chicago, IL.

Nakase-Richardson R, Whyte, J. International collaboration to advance the science and care for those with severe brain injury and disorder of consciousness. International Neurotrauma Letter. 2016. International Brain Injury Association. Available at: <https://www.internationalbrain.org/publications/international-neurotrauma-letter/international-collaboration-to-advance-the-science-and-care-for-those-with-severe-brain-injury-and-disorder-of-consciousness>

Neumann D, Hammond FM, Sander AM, et al. Alexithymia prevalence, characterization, and associations with emotional functioning and life satisfaction: a Traumatic Brain Injury Model System study. *J Head Trauma Rehabil.* 2025;40(2):E175-E184. <https://doi.org/10.1097/HTR.0000000000000967>

Noyes ET, Tang X, Sander AM, et al. Relationship of medical comorbidities to psychological health at 2 and 5 years following traumatic brain injury (TBI). *Rehabil Psychol.* 2021;66(2):107-117. <https://doi.org/10.1037/rep0000366>

Otis JD, McGlinchey R, Vasterling JJ, Kerns RD. Complicating factors associated with mild traumatic brain injury: impact on pain and posttraumatic stress disorder treatment. *J Clin Psychol Med Settings.* 2011;18(2):145-154. <https://doi.org/10.1007/s10880-011-9239-2>

Panenka WJ, Lange RT, Bouix S, et al. Neuropsychological outcome and diffusion tensor imaging in complicated versus uncomplicated mild traumatic brain injury. *PLoS One.* 2015;10(4):e0122746. <https://doi.org/10.1371/journal.pone.0122746>

Pattinson CL, Brickell TA, Bailie J, et al. Sleep disturbances following traumatic brain injury are associated with poor neurobehavioral outcomes in US service members and veterans. *J Clin Sleep Med.* 2021;17(12):2425-2438. <https://doi.org/10.5664/jcsm.9454>

Pattinson CL, Gill JM, Lippa SM, Brickell TA, French LM, Lange RT. Concurrent mild traumatic brain injury and post-traumatic stress disorder is associated with elevated tau concentrations in peripheral blood. *J Trauma Stress.* 2019;32(4):546-554. <https://doi.org/10.1002/jts.22418>

Perrin PB, West SJ, Klyce DW, et al. Psychometric network analysis in rehabilitation research: a methodological demonstration in depression symptoms of veterans and service members at 1 and 2 years after TBI. *Rehabil Psychol.* 2024;69(4):347-356. <https://doi.org/10.1037/rep0000576>

Perrin PB, Xia B, Vasic S, et al. Predicting suicidal ideation and attempts in veterans and service members over the 5 years after TBI: a U.S. Veterans Affairs Model Systems study. Poster presented at: Annual Meeting of the International Brain Injury Association; March 29-April 1, 2023; Dublin, Ireland.

Raad JH, Tulsky DS, Lange RT, et al. Establishing the factor structure of a health-related quality of life measurement system for caregivers of persons living with traumatic brain injury. *Arch Phys Med Rehabil.* 2020;101(7):1220-1232. <https://doi.org/10.1016/j.apmr.2020.03.014>

Reid MW, Miller KJ, Lange RT, et al. A multisite study of the relationships between blast exposures and symptom reporting in a post-deployment active duty military population with mild traumatic brain injury. *J Neurotrauma.* 2014;31(23):1899-1906. <https://doi.org/10.1089/neu.2014.3455>

Ropacki S, Nakase-Richardson R, Farrell-Carnahan L, Lamberty GJ, Tang X. Descriptive findings of the VA Polytrauma Rehabilitation Centers TBI Model Systems National Database. *Arch Phys Med Rehabil.* 2018;99(5):952-959. <https://doi.org/10.1016/j.apmr.2017.12.035>

Sayer NA, Rettmann NA, Carlson KF, et al. Veterans with history of mild traumatic brain injury and posttraumatic stress disorder: challenges from provider perspective. *J Rehabil Res Dev.* 2009;46(6):703-716. Available at: https://www.researchgate.net/publication/41149371_Veterans_with_history_of_mild_traumatic_brain_injury_and_posttraumatic_stress_disorder_Challenges_from_provider_perspective

Shah SA, Mohamadpour M, Askin G, et al. Focal electroencephalographic changes index post-traumatic confusion and outcome. *J Neurotrauma.* 2017;34(19):2691-2699. <https://doi.org/10.1089/neu.2016.4911>

Silva MA, Babicz-Boston MA, Sudolcan BA, et al. Obstructive sleep apnea and polysomnographic predictors of neuropsychological performance two years after injury in a prospective cohort of adults with traumatic brain injury. *Clin Neuropsychol.* Published online January 15, 2025. <https://doi.org/10.1080/13854046.2025.2451321>

Silva MA, Belanger HG, Dams-O'Connor K, Tang X, McKenzie Hartman T, Nakase-Richardson R. Prevalence and predictors of tobacco smoking in veterans and service members following traumatic brain injury rehabilitation: a VA TBIMS study. *Brain Inj.* 2018;32(8):994-999. <https://doi.org/10.1080/02699052.2018.1468576>

Silva MA, Calvo D, Brennan EM, et al. Incidence and predictors of adherence to sleep apnea treatment in rehabilitation inpatients with acquired brain injury. *Sleep Med.* 2020;69:159-167. <https://doi.org/10.1016/j.sleep.2020.01.016>

Silva MA, Dillahunt-Aspilla C, Patel NR, et al. Functional outcome and mental health symptoms in military personnel and veterans pursuing postsecondary education after traumatic brain injury: a VA TBI Model Systems study. *Rehabil Res Policy Educ.* 2019;33(1):41-55. <https://doi.org/10.1891/2168-6653.33.1.41>

Silva MA, Fox ME, Klocksieben F, Hoffman JM, Nakase-Richardson R. Predictors of psychiatric hospitalization after discharge from inpatient neurorehabilitation for traumatic brain injury. *J Head Trauma Rehabil.* 2025;40(3):167-178. <https://doi.org/10.1097/HTR.0000000000000995>

Silva MA, Gonzalez AV, Tang X, et al. Examining the relationship between sleep apnea diagnosis and suicide risk in veterans with traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2023;38(5):359-367.
<https://doi.org/10.1097/htr.0000000000000856>

Silva MA, Hoffman JM, O'Neil-Pirozzi TM, et al. Environmental barriers are associated with rehabilitation needs 10 to 15 years after traumatic brain injury: a Veterans Affairs TBI Model Systems study. *J Head Trauma Rehabil.* 2025;40(2):125-136.
<https://doi.org/10.1097/HTR.0000000000001011>

Silva MA, Irizarri-Mendez A, Klocksieben F, et al. Preliminary investigation of predictors of rehabilitation needs 10-15 years after traumatic brain injury: a Veterans Affairs TBI Model Systems study. Poster presented at: Annual Military Health System Research Symposium; August 26-29, 2024; Kissimmee, FL.

Silva MA, Lee JM, Garcia A, Dams-O'Connor K, Nakase-Richardson R. Research letter: impact of obstructive sleep apnea disease duration on neuropsychological functioning after traumatic brain injury: a Veterans Affairs TBI Model Systems study. *J Head Trauma Rehabil.* 2022;37(6):E496-E501. <https://doi.org/10.1097/htr.0000000000000797>

Silva MA, Miles SR, O'Neil-Pirozzi TM, et al. Alternative structure models of the Traumatic Brain Injury Rehabilitation Needs Survey: a Veterans Affairs TBI Model Systems study. *Arch Phys Med Rehabil.* 2023;104(7):1062-1071. <https://doi.org/10.1016/j.apmr.2023.01.004>

Silva MA, Schwartz DJ, Nakase-Richardson R. Functional improvement after severe brain injury with disorder of consciousness paralleling treatment for comorbid obstructive sleep apnea: a case report. *Int J Rehabil Res.* 2019;42(3):285-288. <https://doi.org/10.1097/MRR.0000000000000364>

Silva MA, VandenBussche Jantz AB, Klocksieben F, et al. Unmet rehabilitation needs indirectly influence life satisfaction 5 years after traumatic brain injury: a Veterans Affairs TBI Model Systems study. *Arch Phys Med Rehabil.* 2021;102(1):58-67.
<https://doi.org/10.1016/j.apmr.2020.08.012>

Silverberg ND, Crane PK, Dams-O'Connor K, et al. Developing a cognition endpoint for traumatic brain injury clinical trials. *J Neurotrauma.* 2017;34(2):363-371.
<https://doi.org/10.1089/neu.2016.4443>

Silverberg ND, Iverson GL, Brubacher JR, et al. The nature and clinical significance of preinjury recall bias following mild traumatic brain injury. *J Head Trauma Rehabil.* 2016;31(6):388-396.
<https://doi.org/10.1097/HTR.0000000000000198>

Silverberg ND, Lange RT, Millis SR, et al. Post-concussion symptom reporting after multiple mild traumatic brain injuries. *J Neurotrauma.* 2013;30(16):1398-1404.
<https://doi.org/10.1089/neu.2012.2827>

Silverberg ND, Panenka W, Iverson GL, et al. Alcohol consumption does not impede recovery from mild to moderate traumatic brain injury. *J Int Neuropsychol Soc.* 2016;22(8):816-827. <https://doi.org/10.1017/S1355617716000692>

Skop KM, Bajor L, Sevigny M, et al. Exploring the relationship between sleep apnea and vestibular symptoms following traumatic brain injury. *PM R.* 2023;15(12):1524-1535. <https://doi.org/10.1002/pmrj.13044>

Smith VA, Lindquist J, Miller KE, et al. Comprehensive family caregiver support and caregiver well-being: preliminary evidence from a pre-post-survey study with a non-equivalent control group. *Front Public Health.* 2019;7:122. <https://doi.org/10.3389/fpubh.2019.00122>

Snow JC, Tang X, Nakase-Richardson R, et al. The relationship between posttraumatic stress disorder symptoms and social participation in veterans with traumatic brain injury: a Veterans Affairs Traumatic Brain Injury Model Systems study. *J Appl Rehabil Counsel.* 2019;50(1):41-56. <https://doi.org/10.1891/0047-2220.50.1.41>

Solomon NP, Brungart DS, Wince JR, et al. Syllabic diadochokinesis in adults with and without traumatic brain injury: severity, stability, and speech considerations. *Am J Speech Lang Pathol.* 2021;30(3S):1400-1409. https://doi.org/10.1044/2020_AJSLP-20-00158

Stevens LF, Lapis Y, Tang X, et al. Relationship stability after traumatic brain injury among veterans and service members: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2017;32(4):234-244. <https://doi.org/10.1097/HTR.0000000000000324>

Steward KA, Silva MA, Maduri P, et al. Obstructive sleep apnea is associated with worse cognitive outcomes in acute moderate-to-severe traumatic brain injury: a TBI Model Systems study. *Sleep Med.* 2022;100:454-461. <https://doi.org/10.1016/j.sleep.2022.09.012>

Sudolcan B, Babicz-Boston M, Ketchum JM, Calero K, Dams O'Connor K, Silva MA. Obstructive sleep apnea and cognitive functioning 2 years after injury in adults with traumatic brain injury. Poster presented at: 38th Annual Meeting of the Associated Professional Sleep Societies; June 1-5, 2024; Houston, TX.

Sullivan KA, Edmed SL, Greenslade JH, et al. Psychological predictors of postconcussive symptoms following traumatic injury. *J Head Trauma Rehabil.* 2018;33(4):E47-E60. <https://doi.org/10.1097/HTR.0000000000000347>

Sullivan KA, Elliot CD, Lange RT, Anderson DS. A known-groups evaluation of the Response Bias Scale in a neuropsychological setting. *Appl Neuropsychol Adult.* 2013;20(1):20-32. <https://doi.org/10.1080/09084282.2012.670149>

Sullivan KA, Lange RT, Edmed SL. Utility of the Neurobehavioral Symptom Inventory-Validity-10 index to detect symptom exaggeration: an analogue simulation study. *Appl Neuropsychol Adult.* 2016;23(5):353-362. <https://doi.org/10.1080/23279095.2015.1079714>

Towns SJ, Zeitzer J, Kamper J, et al. Implementation of actigraphy in acute traumatic brain injury (TBI) neurorehabilitation admissions: a Veterans Administration TBI Model Systems feasibility study. *PM R.* 2016;8(11):1046-1054. <https://doi.org/10.1016/j.pmrj.2016.04.005>

Tran J, Hammond F, Dams-O'Connor K, et al. Rehospitalization in the first year following veteran and service member TBI: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2017;32(4):264-270. <https://doi.org/10.1097/HTR.0000000000000296>

Tsalatsanis A, Dismuke-Greer C, Kumar A, et al. Cost effectiveness of sleep apnea diagnosis and treatment in hospitalized persons with moderate to severe traumatic brain injury. *J Head Trauma Rehabil.* 2024;39(6):E498-E506. <https://doi.org/10.1097/HTR.0000000000000951>

Tsen J, Finn JA, Klocksieben FA, et al. Long-term family needs after a traumatic brain injury: a VA TBI Model Systems study. *J Head Trauma Rehabil.* 2025;40(4):258-268. <https://doi.org/10.1097/HTR.0000000000001015>

Turner SM, Kiser SA, Gipson BJ, Martin EMM, Smith JM. Surveying the landscape: a review of longitudinal traumatic brain injury studies in service member and veteran populations. *J Neurotrauma.* 2023;40(11-12):1060-1074. <https://doi.org/10.1089/neu.2022.0237>

Van Houtven CH, Smith VA, Stechuchak KM, et al. Comprehensive support for family caregivers: impact on veteran health care utilization and costs. *Med Care Res Rev.* 2019;76(1):89-114. <https://doi.org/10.1177/1077558717697015>

Venkatachalam HH, Cruz A, Ching D, Ryan JL, Nakase-Richardson R. Stakeholder perspectives on the facilitators and barriers to meeting the needs of persons with TBI across DoD, VA, and Community Settings. Presented at: American Congress of Rehabilitation Medicine 101st Annual Conference; November 3, 2024; Dallas, TX.

Vasic S, Xia B, Dini M, et al. Community participation trajectories over the 5 years after traumatic brain injury in older veterans: a U.S. Veterans Affairs Model Systems study. *Trauma Care.* 2024;4(2):174-188. <https://doi.org/10.3390/traumacare4020014>

Wäljas M, Iverson GL, Lange RT, et al. Return to work following mild traumatic brain injury. *J Head Trauma Rehabil.* 2014;29(5):443-450. <https://doi.org/10.1097/HTR.0000000000000002>

Wäljas M, Lange RT, Hakulinen U, et al. Biopsychosocial outcome after uncomplicated mild traumatic brain injury. *J Neurotrauma.* 2014;31(1):108-124. <https://doi.org/10.1089/neu.2013.2941>

Wallace RE, Merced K, Perrin PB, Klyce DW. Predictors of functional recovery trajectories among older adult veterans and service members: 1, 2, and 5 years after TBI. Poster presented at: Rehabilitation Psychology 25th Annual Conference; February 16-19, 2023; Austin, TX.

Weiss HL, Perrin PB, Klyce DW, et al. Veteran and service member depressive symptoms measured at 1 and 2 years post-TBI: psychometric network analysis of the PHQ-9. Poster presented at: Rehabilitation Psychology 25th Annual Conference; February 16-19, 2023; Austin, TX.

West SJ, Klyce DW, Perrin PB, et al. A network analysis of the PART-O at 1 and 2 years after TBI: a Veterans Affairs Model Systems study. *J Head Trauma Rehabil.* 2023;38(5):401-409. <https://doi.org/10.1097/HTR.0000000000000820>

Whiteneck GG, Eagee CB, Cuthbert JP, et al. *One and Five Year Outcomes After Moderate-to-Severe Traumatic Brain Injury Requiring Inpatient Rehabilitation: Traumatic Brain Injury Report*. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, National Institute on Disability, Independent Living, and Rehabilitation Research, Administration for Community Living. U.S. Department of Health and Human Services. 2018. <https://stacks.cdc.gov/view/cdc/59524>

Whyte J, Giacino J, Heinemann AW, et al. Brain Injury Functional Outcome Measure (BI-FOM): a single instrument capturing the range of recovery in moderate-severe traumatic brain injury. *Arch Phys Med Rehabil.* 2021;102(1):87-96. <https://doi.org/10.1016/j.apmr.2020.09.377>

Wittine LM, Ketchum JM, Silva MA, et al. Mortality among veterans following traumatic brain injury: a Veterans Administration Traumatic Brain Injury Model System study. *J Neurotrauma.* 2025;42(7-8):745-757. <https://doi.org/10.1089/neu.2024.0043>

Zeitzer JM, Hon F, Whyte J, et al. Coherence between sleep detection by actigraphy and polysomnography in a multi-center, inpatient cohort of individuals with traumatic brain injury. *PM R.* 2020;12(12):1205-1213. <https://doi.org/10.1002/pmrj.12353>

Appendix C: Acronyms

ADL	activities of daily living
BOP	blast overpressure
CGFM	Caregiver and Family Member (Study)
DoW	Department of War
DVBIC	Defense and Veterans Brain Injury Center
FY	Fiscal Year
HRQoL	Health-Related Quality of Life
IMAP	Improved Understanding of Medical and Psychological Needs in Veterans and Service Members with Chronic TBI (Study)
MHS	Military Health System
NDAA	National Defense Authorization Act
OEF	Operation ENDURING FREEDOM
OIF	Operation IRAQI FREEDOM
PRC	Polytrauma Rehabilitation Center
PTSD	posttraumatic stress disorder
TBI	traumatic brain injury
VA	Department of Veterans Affairs
VHA	Veterans Health Administration