Skip to main content

Military Health System

Editorial: Mitigating the Risk of Disease From Tick-borne Encephalitis in U.S. Military Populations

Image of Female Ixodes ricinus Tick ©ECDC/Photo by Francis Schaffner. Female Ixodes ricinus Tick ©ECDC/Photo by Francis Schaffner

Recommended Content:

Medical Surveillance Monthly Report

Tick-borne encephalitis (TBE) has been a recognized threat to public health and force health protection (FHP) among U.S. military service members and other beneficiaries since at least the 1970s. TBE is caused by TBE virus, which is transmitted to humans within minutes of attachment by infected Ixodes ricinus ticks.1 Chiefly endemic in wooded areas in central and eastern Europe and the Baltic and Nordic countries, transmission occurs mainly in the spring through early autumn.2 There is no treatment beyond supportive care, and the vast majority of those infected fully recover. However, despite intensive care intervention, the case fatality rate ranges from 0.5 to 20% depending on the subtype of TBE virus.3–5 In addition, incomplete recovery with long-term neurologic sequelae can occur in 26–46% of those symptomatic cases in Europe.4 Primary prevention for tick bites includes the use of protective clothing, such as long pants/sleeves, and the use of insect repellent,6 such as DEET (chemical name: N,N-diethyl-meta-toluamide; 20 to 50% concentration) and picaridin (at least 20% concentration), on the skin. Added protection is provided by treating clothing, tents, and other gear (but not skin) with the repellent permethrin. Several TBE vaccines are available for use in Europe but have not been widely used by U.S. military personnel residing in or deployed to endemic areas because of lack of licensure by the U.S. Food and Drug Administration (FDA).

The U.S. military has been involved in studying the impact of TBE among service members since the 1980s.7,8 In 1983, Immuno AG submitted an investigational new drug (IND) application to the FDA for the TBE vaccine FSME-Immun Inject® following 25 years of use in Europe.9,10 In February 1996, TBE guidance for the U.S. Commander in Chief, Europe, regarding personnel supporting Operation Joint Endeavor stressed adherence to personal protective measures and, if at high risk, consideration for voluntary receipt of an accelerated, 3-dose TBE vaccine series under an IND protocol.11 Findings from that protocol revealed a 20%, 60%, and 80% seroconversion in the 954 individuals who had received 1, 2, or 3 doses of TBE vaccine, respectively.12 Of the 959 unvaccinated individuals, 4 (0.42%) demonstrated seroconversion and all were asymptomatic.

In subsequent years, additional publications from Europe demonstrated the scope of TBE and the efficacy of TBE vaccine.13–17 In 2011, the World Health Organization published its first position paper on TBE vaccines, and in 2012, TBE became a reportable disease entity among countries in the European Union.13,18,19 Collectively, these reports, along with a few recent high-profile cases among U.S. military service members and beneficiaries stationed in Europe, piqued Department of Defense (DoD) interest for an updated review of both the magnitude of TBE disease and an approach toward management within the U.S. military population. However, it was quickly recognized that there are challenges in assessing TBE epidemiology in U.S. military populations, including lack of recognition of the disease among U.S. and host nation providers, incomplete reporting of recognized disease, and misclassification of vaccine administration as true disease in administrative medical records (Armed Forces Health Surveillance Branch, email communications, 23–24 September 2019). These issues resulted in a large amount of concern and uncertainty regarding the threat of TBE to U.S. personnel among not only medical and public health assets within the U.S. European Command (USEUCOM) but also among the supported operational forces.

The 2 articles on TBE in this issue of the MSMR constitute an effort to provide a more accurate and precise risk assessment for U.S. military personnel stationed or deployed in USEUCOM through high-quality data that are actionable and inform FHP posture. The first article presents surveillance data including trends in TBE disease from 2006 to 2018 in U.S. military populations in Europe and reports on the efforts to identify and validate cases through multiple data sources and records review. The second article describes an in-depth review of a series of TBE cases that occurred in 2017 and 2018 in the area supported by the U.S. Army Medical Department Activity-Bavaria. These articles highlight the value and power of the centralized Defense Medical Surveillance System (DMSS) in combination with in-depth review of medical records by medical and public health personnel. Together, the 2 articles provide objective evidence that the risk to U.S. service members and beneficiaries of contracting TBE disease in Europe is small but non-zero as well as some limited evidence of increasing risk in recent years.

The risk assessment presented in the first article is relevant to discussions of pursuing additional vaccine options to enhance FHP posture against TBE. DoD Instruction 6205.0220 establishes policy, assigns responsibilities, and provides procedures to establish a uniform DoD immunization program in accordance with the authority in DoD Directive 6200.0421 and DoD Instruction 1010.10.22 For infectious diseases identified within the U.S. or in areas with frequent U.S. travelers, the military (similar to the civilian population) relies on primary prevention tools, including FDA-approved immunizations, which are administered in accordance with recommendations from the Centers for Disease Control and Prevention (CDC) and its Advisory Committee on Immunization Practices (ACIP). However, given the worldwide assignments of DoD beneficiaries, there may be diseases, such as TBE, for which a host nation approved medical product may exist but for which the manufacturer has not submitted an application for U.S. FDA approval.

When there is no available FDA-approved medical product, under DoD Instruction 6200.02,23 a DoD component may request that the Assistant Secretary of Defense for Health Affairs (ASD-HA) authorize the voluntary use of an investigational medical product for FHP use. Such requests, approval, and implementation must comply with applicable laws and FDA regulations and would involve the provision of the non-FDA approved vaccine for FHP purposes on a voluntary basis under an Emergency Use Authorization or IND protocol. TBE vaccine is currently not an FHP requirement, but the host nation approved product is authorized for voluntary receipt through TRICARE for at-risk DoD beneficiaries in endemic areas of Europe and Asia when vaccine is received from TRICARE authorized providers.24

Both USEUCOM and the Defense Health Agency, through the Immunization Healthcare Branch, the Office of the ASDHA, and other key DoD stakeholders, are working together to reduce the barriers to vaccination and increase the availability of vaccines to U.S. military beneficiaries stationed in Europe. The challenges surrounding pursuing additional vaccination options and the considerations regarding associated resources to invest will continue to be guided by accurate, precise estimates of the disease burden like the ones provided in this issue of the MSMR. Additional seroepidemiologic studies are needed in areas where DoD beneficiaries reside to better define the distribution of TBE and to guide future TBE vaccination policies in areas with high TBE incidence.25 Furthermore, it cannot be overstated that protective measures against tick-borne diseases, such as TBE, remain grounded in primary prevention.


Author affiliations: Immunization Healthcare Branch, Public Health Division, Defense Health Agency, Falls Church, VA.

REFERENCES

1. Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371(9627):1861–1871. 

2. Beauté J, Spiteri G, Warns-Petit E, Zeller H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018;23(45).

3. Kaiser R. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–98: a prospective study of 656 patients. Brain. 1999;122:2067–2078.

4. Taba P, Schmutzhard E, Forsberg P, et al. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur J Neurol. 2017;24(10):1214–e1261.

5. LaSala PR, Holbrook M. Tick-borne flaviviruses. Clin Lab Med. 2010;30(1):221–235.

6. Rendi-Wagner P. Risk and prevention of tick-borne encephalitis in travelers. J Travel Med. 2004;11(5):307–312.

7. McNeil JG, Lednar WM, Stansfield SK, Prier RE, Miller RN. Central European tick-borne encephalitis: assessment of risk for persons in the armed services and vacationers. J Infect Dis. 1985;152(3):650–651.

8. Clement J, Leirs H, Armour V, et al. Serologic evidence for tick-borne encephalitis (TBE) in North-American military stationed in Germany. Acta Leiden. 1992;60(2):15–17.

9. Kunz C, Heinz FX, Hofmann H. Immunogenicity and reactogenicity of a highly purified vaccine against tick-borne encephalitis. J Med Virol. 1980;6(2):103–109.

10. Barrett PN, Dorner F, 1994. Tick-borne encephalitis vaccine. In: Plotkin SA, Mortimer EA, eds. Vaccines. 2nd ed. Philadelphia, PA: W. B. Saunders Company, 715–727.

11. Office of the Assistant Secretary of Defense. Health Affairs Policy Memorandum—Policy for Tick-Borne Encephalitis Preventive Measures for U.S. Forces Deployed During Operation Joint Endeavor. HA Policy 96-031. 20 February 1996.

12. Craig SC, Pittman PR, Lewis TE, et al. An accelerated schedule for tick-borne encephalitis vaccine: the American military experience in Bosnia. Am J Trop Med Hyg. 1999;61(6):874–878.

13. Kunze U, ISW-TBE. Tick-borne encephalitis—a notifiable disease: report of the 15th Annual Meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE). Ticks Tick Borne Dis. 2013;4(5):363–365.

14. Sumilo D, Bormane A, Vasilenko V, et al. Upsurge of tick-borne encephalitis in the Baltic States at the time of political transition, independent of changes in public health practices. Clin Microbiol Infect. 2009;15(1):75–80.

15. Heinz FX, Stiasny K, Holzmann H, Grgic-Vitek M, Kriz B, Essl A, Kundi M. Vaccination and tick-borne encephalitis, central Europe. Emerg Infect Dis. 2013;19(1):69–76.

16. Kunz C. TBE vaccination and the Austrian experience. Vaccine. 2003;21(suppl 1):s50–s55.

17. Heinz FX, Stiasny K, Holzmann H, et al. Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance. Euro Surveill. 2015;20(13):9–16.

18. World Health Organization. Vaccines against tick-borne encephalitis: WHO position paper. Wkly Epidemiol Rec. 2011;86(24):241–256.

19. European Centre for Disease Prevention and Control. Epidemiological situation of tick-borne encephalitis in the European Union and European Free Trade Association countries. https://ecdc.europa.eu/publications-data/epidemiological-situation-tick-borne-encephalitis-european-union-andeuropean. Accessed 17 October 2019.

20. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 6205.02. DoD Immunization Program. 23 July 2019.

21. Headquarters, U.S. Department of Defense. Directive 6200.04, Force Health Protection (FHP). 23 April 2007.

22. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 1010.10. Health Promotion and Disease Prevention. 12 January 2018.

23. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 6200.02. Application of Food and Drug Administration (FDA) Rules to Department of Defense Force Health Protection Programs. 27 February 2008.

24. Office of the Assistant Secretary of Defense Health Affairs. Chapter 12, Section 1.2. TRICARE Overseas Program (TOP) Medical Benefit Variations. In: TRICARE Policy Manual 6010.57-M. 1 February 2008.

25. Botelho-Nevers E, Gagneux-Brunon A, Velay A, et al. Tick-borne encephalitis in Auvergne-Rhône-Alpes region, France, 2017–2018. Emerg Infect Dis. 2019;25(10):1944–1948.

You also may be interested in...

MSMR Vol. 29 No. 07 - July 2022

Report
7/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

Article
6/1/2022
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

As in previous years, among service members deployed during 2021, injury/poisoning, musculoskeletal diseases and signs/symptoms accounted for more than half of the total health care burden during deployment. Compared to garrison disease burden, deployed service members had relatively higher proportions of encounters for respiratory infections, skin diseases, and infectious and parasitic diseases. The recent marked increase in the percentage of total medical encounters attributable to the ICD diagnostic category "other" (23.0% in 2017 to 44.4% in 2021) is likely due to increases in diagnostic testing and immunization associated with the response to the COVID-19 pandemic.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

Article
6/1/2022
Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

In 2021, mental health disorders accounted for the largest proportions of the morbidity and health care burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 and those aged 65 or older, musculoskeletal diseases accounted for the most morbidity and health care burdens. As in previous years, this report documents a substantial majority of non-service member beneficiaries received care for current illness and injury from the Military Health System as outsourced services at non-military medical facilities.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

Hospitalizations, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Hospitalizations, Active Component, U.S. Armed Forces, 2021

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental health disorders, pregnancy-related conditions, injury/poisoning, and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

In 2021, as in prior years, the medical conditions associated with the most medical encounters, the largest number of affected service members, and the greatest number of hospital days were in the major categories of injuries, musculoskeletal disorders, and mental health disorders. Despite the pandemic, COVID-19 accounted for less than 2% of total medical encounters and bed days in active component service members.

Recommended Content:

Medical Surveillance Monthly Report

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

Article
6/1/2022
Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were most common, followed by disorders of the digestive system and mental health disorders.

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared to 19% in 2020.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Article
5/1/2022
NIANTIC, CT, UNITED STATES 06.16.2022 U.S. Army Staff Sgt. John Young, an information technology specialist assigned to Joint Forces Headquarters, Connecticut Army National Guard, works on a computer at Camp Nett, Niantic, Connecticut, June 16, 2022. Young provided threat intelligence to cyber analysts that were part of his "Blue Team" during Cyber Yankee, a cyber training exercise meant to simulate a real world environment to train mission essential tasks for cyber professionals. (U.S. Army photo by Sgt. Matthew Lucibello)

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021

Article
5/1/2022
iStock—The castor bean tick (Ixoedes ricinus). Credit: Erik Karits

Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that is transmitted by the bite of infected ticks, mostly found in wooded habitats in parts of Europe and Asia

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Article
5/1/2022
SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin)

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

Recommended Content:

Medical Surveillance Monthly Report

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2013–2021

Article
5/1/2022
This illustration depicts a 3D computer-generated image of a number of drug-resistant Neisseria gonorrhoeae bacteria. CDC/James Archer

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2013–2021. In general, compared to their respective counterparts, younger service members, non-Hispanic Black service members, those who were single and other/unknown marital status, and enlisted service members had higher incidence rates of STIs.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report

Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2006–2021

Article
4/1/2022
Marine Corps Cpl. Luis Alicea drinks water after a combat conditioning exercise at Naval Air Station Joint Reserve Base New Orleans, May 20, 2019. Photo By: Marine Corps Lance Cpl. Jose Gonzalez.

Exertional (or exercise-associated) hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 mEq/L) that develops during or up to 24 hours following prolonged physical activity. Acute hyponatremia creates an osmotic imbalance between fluids outside and inside of cells.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 13
Refine your search
Last Updated: January 09, 2020
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery