Back to Top Skip to main content Skip to sub-navigation

Brief Report: Medical Encounters for Snakebite Envenomation, Active and Reserve Components, U.S. Armed Forces, 2016–2020

Image of Masters of camouflage, the Sidewinder Rattlesnakes are out and about aboard Marine Corps Logistics Base Barstow, California, May 11. Watch where you put your hands and feet, and observe children and pets at all times, as this is the natural habitat for these venomous snakes and a bite can cause serious medical problems. Notice the sharp arrow-shaped head with pronounced jaws, and the raised eye sockets, as well as the telltale rattles. Keep in mind, however, that rattles can be broken or lost, so you may or may not hear a rattle before they strike to protect themselves. Masters of camouflage, the Sidewinder Rattlesnakes are out and about aboard Marine Corps Logistics Base Barstow, California, May 11. Watch where you put your hands and feet, and observe children and pets at all times, as this is the natural habitat for these venomous snakes and a bite can cause serious medical problems. Notice the sharp arrow-shaped head with pronounced jaws, and the raised eye sockets, as well as the telltale rattles. Keep in mind, however, that rattles can be broken or lost, so you may or may not hear a rattle before they strike to protect themselves.

Recommended Content:

Medical Surveillance Monthly Report

Background

Of the approximately 3,000 known snake species in the world, about 20% (i.e., 600 species) are venomous.1 Snakebite envenomation (SBE) occurs when venom is injected into a human or animal via a snake's fangs, or much less frequently, via spitting venom into a victim's eye or open wound. Not all snakebites result in envenomation; an estimated 25% to 50% of snakebites are "dry bites" in which an insufficient amount of venom is injected to cause clinical symptoms.2,3 Clinical effects of snake envenomation can range from mild local effects (e.g., superficial puncture wounds, pain and swelling) to more severe complications including permanent disability and death.3

SBEs are a significant public health issue especially in the tropical and subtropical areas of Africa, Asia, and Latin America.4 In 2017, the World Health Organization (WHO) identified SBE as a neglected tropical disease. WHO estimates between 1.8-2.7 million SBEs occur annually, resulting in an estimated 81,410 to 137,880 deaths.5 Each year in the U.S., there are an estimated 5,000-10,000 SBEs and fewer than 10 associated deaths.6

Although rare, SBEs are an occupational hazard for military members worldwide. The recent published literature on SBE in military members is sparse. During contingency operations in Iraq and Afghanistan, self-reported incidence of snakebite in U.S. troops was 4.9 snakebites per 10,000 person-months.7 A recent review of snakebites treated between 2015-2017 by the French military health service in overseas locations identified only two soldiers (1 French, 1 Dutch) treated for SBE in Mali, both of whom were treated with antivenom and recovered fully.8 A 2018 summary of snakebites in UK personnel focused on Europe and Africa and reported on an envenomation in a UK service member bitten by a horned viper in Croatia. This summary also highlighted that the majority of SBE cases treated by military medical providers occurred among local civilians.9 The only death attributed to SBE in a U.S. service member that was reported in the lay press occurred in 2015 in Kenya.10

No comprehensive summary of all medically diagnosed SBEs in U.S. service members worldwide has been published. This analysis summarizes the incidence of SBE in active and reserve component service members identified through review of administrative medical data. This analysis also provides a breakdown of SBEs by demographic and military characteristics including the country and combatant command in which the SBEs were treated.

Methods

The surveillance period was from 1 January 2016 through 31 December 2020. The surveillance population included all individuals who served in the active or reserve component of the U.S. Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. The Defense Medical Surveillance System (DMSS) was searched for all inpatient, outpatient and/ or theater medical encounters that contained any of the ICD-10 codes falling under the parent code T63.0 ("Toxic effect of snake venom") in any diagnostic position. Because ICD-9 diagnoses still appear in the theater medical encounter data, service members could also qualify as a case if they had a diagnosis of ICD-9: 989.5 ("Toxic effect of venom") or E905.0 ("Venomous snakes and lizards causing poisoning and toxic reactions"). The patient assessment field was reviewed for these ICD-9 coded records to determine whether the injury was caused by a snake, and only the records for injuries that were caused by snakes were retained. A service member could be counted as an incident case once per year. The location of the SBE was determined by mapping the treating facility for the SBE to a specific country and combatant command.

Results

During the 5-year surveillance period, a total of 345 SBEs were diagnosed in U.S. service members. Approximately 90% of cases were among male service members and about 45% occurred in soldiers. More than three-quarters of SBEs were diagnosed among active component service members (Table). The majority of cases occurred in service members in the 20-29 year old age group. Service members in the repair/engineering and combat-specific occupational groups were the most frequently affected by SBEs and constituted over half of all SBEs during the period (Table).

The annual numbers of SBEs were at their highest in 2017 (n=83); this peak represented a 9.2% increase in SBEs over the prior year. Total SBEs declined by 22.6% in 2018 and a further 9.4% in 2019; 2019 had the lowest number of incident cases of SBE during the surveillance period (n=58). Incident cases increased by 10.3% in 2020 (n=64) which was the same level as 2018 (Figure 1). Overall, 59.4% (n=205) of the cases occurred between the months of June and September (Figure 2).

Most SBE cases (96.2%) were diagnosed in the U.S.; consequently, almost 96% of cases occurred in the U.S. Northern Command (Table). Cases diagnosed in Hawaii are attributed to the U.S. IndoPacific Command. Counts of cases by specific location were 1 in Puerto Rico, 330 in the U.S. (excluding Hawaii), 5 in Guam, 4 in Japan, 2 in Korea, 2 in Hawaii, and 1 with an unknown location.

Editorial Comments

This analysis demonstrates that the vast majority of medically diagnosed SBEs in U.S. service members during 2016-2020 occurred in the U.S. In accordance with the findings of a recent report on the epidemiology of snakebites in the U.S., male service members were disproportionately affected by SBEs.6

This analysis is subject to the same limitations as any analysis of administrative medical data. Only SBEs that were diagnosed by a medical provider and entered into a service member's electronic medical record could be included in this analysis. An SBE could also be missed due to miscoding or because medical care for an SBE was not documented in the medical record.

In the U.S., service member SBEs occur more frequently during warm weather months. Preventive measures for avoiding SBE include precautions such as avoiding snakes in the wild, wearing long pants or boots when working or walking outdoors, and wearing gloves when handling brush or reaching into areas that might house snakes. Anyone bitten by a snake should seek medical attention as soon as possible.11,12

Although this analysis demonstrates that the majority of service members' SBEs occur in the U.S., appropriate precautions should be taken to avoid SBE during deployment outside of the U.S. Planning for deployment should include education in the medically important snake species and the appropriate medical management of snakebites specific to deployment location. In 2020, the Joint Trauma System published a Clinical Practice Guideline for Global Snake Envenomation Management (CPG ID:81) which provides a comprehensive guide to snakebite management by combatant command.12

References

  1. Venemous snakes distribution and species risk categories. World Health Organization. Accessed 08 May 2021. https://apps.who.int/bloodproducts/snakeantivenoms/database/
  2. Pucca MB, Knudsen C, S Oliveira I, et al. Current Knowledge on Snake Dry Bites. Toxins (Basel). 2020;12(11):668.
  3. Joint Trauma System Clinical Practice Guideline: Global Snake Envenomation Management. Accessed 08 May 2021. https://jts.amedd.army.mil/assets/docs/cpgs/Global_Snake_Envenomation_Management_30_Jun_2020_ID81.pdf
  4. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218.
  5. World Health Organization. Snake bite envenomation. 2019. World Health Organization. Accessed April 29, 2020. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
  6. Greene SC, Folt J, Wyatt K, Brandehoff NP. Epidemiology of fatal snakebites in the United States 1989-2018. Am J Emerg Med. 2020 Aug 29:S0735-6757(20)30777-30784.
  7. Shiau DT, Sanders JW, Putnam SD, et al. Selfreported incidence of snake, spider, and scorpion encounters among deployed U.S. military in Iraq and Afghanistan. Mil Med. 2007;172(10):1099-1102.
  8. Bomba A, Favaro P, Haus R, et al. Review of Scorpion Stings and Snakebites Treated by the French Military Health Service During Overseas Operations Between 2015 and 2017. Wilderness Environ Med. 2020;31(2):174-180.
  9. Wilkins D, Burns DS, Wilson D, Warrell DA, Lamb LEM. Snakebites in Africa and Europe: a military perspective and update for contemporary operations. J R Army Med Corps. 2018 Sep;164(5):370-379.
  10. Montgomery, Nancy. Soldier died of venomous snake bite, autopsy confirms. Stars and Stripes. March 15, 2015. Accessed May 08, 2021. https://www.stripes.com/news/soldier-died-of-venomous-snake-bite-autopsy-confirms-1.334382
  11. Torpy JM, Schwartz LA, Golub RM. JAMA patient page. Snakebite. JAMA. 2012;307(15):1657.

FIGURE 1. Annual counts of incident cases of snakebite envenomations, by sex, active and reserve component service members, U.S. Armed Forces, 2016–2020

FIGURE 2. Cumulative number of incident snakebite envenomations, by month, active and reserve component service members, U.S Armed Forces, 2016–2020

TABLE. Demographic and military characteristics of incident cases of snakebite envenomation, U.S. Armed Forces, 2016–2020

You also may be interested in...

Update: Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
12/1/2021
Osteoarthritis (OA) knee . film x-ray AP ( anterior - posterior ) and lateral view of knee show narrow joint space, osteophyte ( spur ), subchondral sclerosis, knee joint inflammation. Photo by: iStockPhoto

Osteoarthritis (OA), the most com­mon adult joint disease, is primarily a degenerative disorder of the entire joint organ, including the subchondral bone, synovium, and periarticular structures (e.g., tendons, ligaments, bursae). Spondylosis, often referred to as OA of the spine, is characterized by degenerative changes in the vertebral discs, joints, and vertebral bodies.

Recommended Content:

Medical Surveillance Monthly Report

Incident COVID-19 Infections, Active and Reserve Components, Jan. 1, 2020–Aug. 31, 2021

Article
12/1/2021
U.S. Marines with Marine Rotational Force - Darwin receive a second COVID-19 test during quarantine on Royal Australian Air Force Base Darwin in Darwin, NT, Australia, June 12, 2020. The COVID-19 test was administered to each Marine after arriving from California. All Marines will be quarantined for 14 days and undergo an additional test before quarantine release. No Marines tested positive for COVID-19. The U.S. Marine Corps and Australian Defence Force service members are working together to ensure the safety of the local community. (U.S. Marine Corps photo by Lance Cpl. Natalie Greenwood)

Incident COVID-19 Infections, Active and Reserve Components, 1 January 2020–31 August 2021

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Donovanosis Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
12/1/2021
This photomicrograph of a tissue sample extracted from a lesion in the inguinal region of the female granuloma inguinale, or Donovanosis patient, depicted in PHIL 6431, revealed a white blood cell (WBC) that contained the pathognomonic finding of Donovan bodies, which were encapsulated, Gram-negative rods, representing the responsible bacterium Klebsiella granulomatis, formerly known as Calymmatobacterium granulomatis. Photo credit: CDC/ Susan Lindsley

Recommended Content:

Medical Surveillance Monthly Report

Update: Plant Dermatitis Among Active Component Service Members, U.S. Armed Forces, 2010–2020

Article
11/1/2021
Poison ivy (Toxicodendron radicans)

Plant dermatitis is an allergic inflammatory skin reaction in response to the oils of poisonous plants. In the U.S., the most common dermatitis-causing plant genus is the Toxicodendron (formerly Rhus). Approximately 50%–75% of the U.S. adult population are susceptible to skin reactions upon exposure to Toxicodendron oil or oleoresin, called urushiol.

Recommended Content:

Medical Surveillance Monthly Report

Sepsis Hospitalizations Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
11/1/2021
SAN DIEGO (Oct. 19, 2020) Hospital Corpsman 2nd Class Brittni Porter, a laboratory technician assigned to Naval Medical Center San Diego’s (NMCSD) microbiology laboratory, exams agar slides during a drug susceptibility tests Oct. 19. Drug susceptibility tests are conducted to see if a particular antibiotic will react with a patient’s sample on an agar slide. NMCSD’s mission is to prepare service members to deploy in support of operational forces, deliver high quality healthcare services and shape the future of military medicine through education, training and research. NMCSD employs more than 6,000 active duty military personnel, civilians, and contractors in Southern California to provide patients with world-class care anytime, anywhere. (U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Greenberg)

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Prevalence of Hepatitis C Virus Infections in U.S. Air Force Basic Military Trainees Who Donated Blood, 2017–2020

Article
11/1/2021
U.S. Army Staff Sgt. Brandon Sousa, 424th Engineer Vertical Construction Company, donates blood to the 379th Expeditionary Medical Group’s Blood Support Center, Aug. 30, 2021, at Al Udeid Air Base, Qatar. The blood support center conducted a walking blood bank to collect blood from prescreened and cleared donors. The blood was sent downrange to support Afghanistan evacuation operations. The DoD is committed to supporting the U.S. State Department in the departure of U.S. and allied civilian personnel from Afghanistan, and to evacuate Afghan allies to safety. (U.S. Air Force photo by Senior Airman Kylie Barrow)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Health Care Workers, August 2016–April 2021

Article
10/1/2021
Staff Sgt. James H. Wagner, William Beaumont Army Medical Center, vaccinates Maj. Gen. M. Ted Wong, commanding general, William Beaumont Army Medical Center, with the seasonal flu vaccines.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: History of COVID-19 Vaccination Among Air Force Recruits Arriving at Basic Training, March 2–June 15, 2021

Article
10/1/2021
COVID-19 vaccine bottle and syringes

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2016–June 2020

Article
10/1/2021
A student in the army participates in a cold-water immersion training

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: The Challenge of Interpreting Repeated Positive Tests for SARS-CoV-2 Among Military Service Members, Fort Jackson, SC, 2020–2021

Article
10/1/2021
Gloved hand holding an example of a negative rapid test for the SARS-CoV-2 virus (COVID-19).

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2016–June 2021

Article
9/1/2021
HIV Awareness graphic showing test tubes with HIV + and HIV - labels

Recommended Content:

Medical Surveillance Monthly Report

Is Suicide a Social Phenomenon during the COVID-19 Pandemic? Differences by Birth Cohort on Suicide Among Active Component Army Soldiers, Jan.1, 2000–June 4, 2021

Article
9/1/2021
Spc. Brittney VerBerkmoes speaks among fellow Soldiers in a group centered on finding a way for the Army to mitigate the amount of suicides that occurs among Soldiers.

Is Suicide a Social Phenomenon during the COVID-19 Pandemic? Differences by Birth Cohort on Suicide Among Active Component Army Soldiers, 1 January 2000–4 June 2021

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Relationships between Self-reported Psychological Conditions and Aggressive Behaviors Among Crew Members of a U.S. Navy Aircraft Carrier, January 2021

Article
9/1/2021
A U.S. Marine Corps drill instructor with Golf Company, 2nd Recruit Training Battalion, motivates a recruit during a Marine Corps Martial Arts Program (MCMAP) training session at Marine Corps Recruit Depot, San Diego, Aug. 2, 2021.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: A Simple Model Estimating the Impact of COVID-19 on Lost Duty Days Among U.S. Service Members

Article
9/1/2021
U.S. Navy Hospital Corpsman 2nd Class Julian Gordon administers a COVID-19 test to a U.S. Marine

Recommended Content:

Medical Surveillance Monthly Report

Cross-Sectional Analysis of the Association between Perceived Barriers to Behavioral Health Care and Intentions to Leave the U.S. Army

Article
9/1/2021
U.S. Army Central Reserve component Soldiers swear the oath of enlistment during a mass reenlistment ceremony in celebration of the U.S. Army Reserve 113th birthday at Camp Arifjan, Kuwait, April 23, 2021.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 16 - 30 Page 2 of 12
Refine your search
Last Updated: August 25, 2021

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.