Skip to main content

Military Health System

Brief Report: The Challenge of Interpreting Repeated Positive Tests for SARS-CoV-2 Among Military Service Members, Fort Jackson, SC, 2020–2021

Image of Gloved hand holding an example of a negative rapid test for the SARS-CoV-2 virus (COVID-19). An example of a negative rapid test for the SARS-CoV-2 virus (COVID-19). The Texas Military Department has begun distributing rapid COVID-19 tests to its service members across the state as a force health protection measure. This will ensure that the Soldiers and Airmen serving their communities during the COVID-19 pandemic remain healthy and safe. (Photo by ENS Charles E. Spirtos)

Recommended Content:

Medical Surveillance Monthly Report

Background

Reinfection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is believed to be uncommon. However, suspected cases of reinfection have been reported from multiple countries, and many of these cases have been associated with SARS-CoV-2 variants.1-3 As the spread of the variants increases, so may the risk of reinfection. Reinfection is defined here as persons who were infected once, recovered, and then later became infected again. Unfortunately, it is difficult to differentiate reinfection from 1) reactivation of the virus which persisted after the original infection (despite apparent clinical recovery), 2) persistence of non-viable viral debris, or 3) laboratory error or variation. In one large contact tracing study in Korea, for example, 285 patients were found to have persistent positive results for up to 12 weeks after initial infection, but the Korea Centers for Disease and Prevention (KCDC) found no evidence of transmissibility or ability to isolate replication-competent virus.4

It is important to know if a person is re-infected in order to understand the true burden of disease. In addition, public health interventions, including isolation, investigating unvaccinated contacts, and vaccination are required for each case. Although a history of prior infection has been associated with an 84% lower risk of infection,5 subsequent reinfections have been increasing.6,7 Letizia et al. reported the rate of new infections among those with positive antibodies, even in a rigidly controlled basic training environment, to be 1.1 cases per person-year.7 Furthermore, belief that previous infection with SARS-CoV-2 leads to immunity from reinfection may result in behaviors which increase the likelihood of transmission and infection, including hesitancy and delays in vaccination.8 For these reasons, it is important to understand the scope and impact of recurrent SARS-CoV-2 positive tests in military and civilian populations.

This report details a case series of service members with repeated positive tests for SARS-CoV-2 in a U.S. Army Training and Doctrine Command installation. The current findings underscore the need for a standardized approach to identify and respond to suspected cases of SARS-CoV-2 reinfection, and highlight the challenges of using this information to guide effective Force Health Protection (FHP) and communication strategies among Department of Defense (DOD) personnel.

Clinical Presentations

SARS-CoV-2 positive cases were identified through public health surveillance activities within the Moncrief Army Community Hospital's Department of Preventive Medicine at Fort Jackson, SC. Suspected cases were tested using the Cepheid Xpert® Xpress SARS-CoV-2 test on the GeneXpert® System (Cepheid Inc., Lawrence Livermore National Labs, CA) and the BinaxNOW™ (Abbott Diagnostics Scarborough, Inc., Scarborough, ME) antigen card. Both are authorized for use under a Food and Drug Administration Emergency Use Authorization. The Xpert Xpress SARS-CoV-2 utilizes real-time reverse-transcription polymerase chain reaction (qRT-PCR) testing for qualitative and quantitative detection of viral nucleic acid from patients suspected of infection with the SARS-CoV-2 virus. Approved for use as a qualitative diagnostic, this assay (run on the GeneXpert system) generates a report that includes result interpretation and the cycle threshold (Ct) value, (i.e., the number of cycles required in order for the signal to cross and exceed the background threshold). The Ct value is inversely proportional to the number of copies of the target nucleic acid (i.e., copy number) and the number of whole viral genomes in the actual sample. Earlier or lower Ct values suggest a higher viral load, while later or higher values suggest a lower viral load. The BinaxNOW™ antigen card is a lateral flow immunoassay, point-of-care test (POCT) used strictly for the qualitative detection of SARS-CoV-2 nucleocapsid protein antigen.

Eight service members with recurrent positive SARS-CoV-2 tests were identified at Fort Jackson, SC between July 2020 and March 2021 (Table). All were enlisted service members ranging in age from 18 to 31 years of age (mean=23.6 years) (data not shown). None of the 8 service members were identified as close contacts of one another. Six were male; 5 were originally identified as Army basic trainees; 6 had initially reported no symptoms, although 2 of the 6 later displayed symptoms upon reinfection; one had recently returned from an overseas location (data not shown). None had any SARS-CoV-2 tests performed (qRT-PCR or POCT) other than those listed (Table). The average number of days between 2 positive tests was 174 (range: 117–243 days). None had received any doses of COVID-19 vaccine by the time of the potential second infection. None of the patients were hospitalized at any time, and all recovered without any complications. Only one was employed in health care. Of note, all service members were isolated and had their contacts quarantined during both episodes.

All 8 of the service members met the Centers for Disease Control and Prevention (CDC) case definition for confirmed or probable infection with both the first and the second positive test; 9 and, therefore all were reported as COVID-19 cases both times as per DOD reporting requirements.10 The confirmed cases all had a positive qRT-PCR, while the probable cases had symptoms, which met the clinical criteria, and a positive rapid test. The criteria for investigation of suspected reinfection from the CDC were used to assess the likelihood of COVID-19 reinfection.11 The factors which make reinfection more likely included: presence of symptoms, interval ≥ 90 days between positive tests, lower or earlier Ct values (i.e., less than 33), and presence of at least 1 negative test between occurrences. The CDC also requires that a respiratory sample from each infection episode be available for further investigation using genomic sequencing, but no such specimens were available for any of these service members. Many of the Ct values seen in these service members were high or late (i.e., weakly positive), suggesting that they are more likely to be false positives or persistent low-level positives from an earlier infection. Based on these criteria, 2 were considered to be possible reinfections, 3 were unlikely, and 3 had insufficient information to assess.

Editorial Comment

The risk of having a positive test for SARS-CoV-2 after prior infection has been estimated at 14.8%, but this includes both viral persistence as well as reinfections.12 Younger patients, such as the service members seen in this report, have been shown to be more likely to have recurrent positives, and they are the predominant group with delayed (>90 days) recurrent positives.13 However, in the absence of genome sequence data, it is difficult to determine if the cases are truly reinfections. In this study, 3 of the 8 patients identified were assessed as unlikely to have had a reinfection and 3 had insufficient information to assess reinfection. Complicating this assessment is the fact that there is no standardized or accepted definition of a SARS-CoV-2 reinfection, although several have been proposed.14,15 Another limitation of this study that should be taken into consideration when interpreting the results was the use of quantitative data from the GeneXpert, which was approved as a qualitative but not a quantitative test. Finally, rapid POCTs can vary in sensitivity and specificity based on viral load and patient presentation.

For these reasons, a more thorough investigation is recommended for future suspected cases of reinfection using the CDC investigation protocol.11 Specifically, viral culture and genomic sequencing of paired specimens (one from each episode) should be undertaken to confirm the presence of transmissible virus and to identify unique variants or infections.11,16 The CDC protocol states that investigations of reinfection should prioritize persons in whom SARS-CoV-2 RNA has been detected ≥ 90 days since first SARS-CoV-2 infection whether or not symptoms were present.11 Persons with COVID-19-like symptoms and detection of SARS-CoV-2 RNA 45–89 days since first SARS-CoV-2 infection may also be investigated if they had a symptomatic second episode and no obvious alternate etiology for COVID-19-like symptoms or close contact with a person known to have laboratory-confirmed COVID-19.11 The investigation of both groups requires paired specimens and is only recommended for those with a cycle threshold (Ct) value <33 or if the Ct value is unavailable. Genomic testing can then provide evidence of whether the second positive test represents a true reinfection. Serial collection of respiratory specimens and serologic testing may also help to assess reinfection status.

The uncertainty in the reinfection status also has implications for surveillance data and public health response. If these are true cases of reinfection, then they should be counted as new incident cases. However, if they are false positives or persistent positives from the original infection, counting them will result in overestimates of the true disease burden. The reinfection status of most of these service members is doubtful or uncertain based on the criteria listed above, suggesting that service members should be counted only once as incident cases until more compelling evidence of true reinfection is presented. Additionally, the isolation of most of the service members in this study (and quarantine of their close contacts) was probably unnecessary given the low likelihood of transmissibility suggested by the Ct values. Nevertheless, due to the uncertainty around these cases, it was reasonable to take a conservative approach in the context of an ongoing pandemic. The uncertainty about such cases underscores the need for further investigation of patients with recurrent positive tests so that they may have their disease status correctly classified, which would enable more effective counseling regarding individual behaviors and a more targeted public health response.

Finally, these results suggest the need for clear public health risk communication to previously infected individuals, particularly regarding the risk of reinfection and the potential mitigating effects of vaccination. Previously infected individuals who believe that they are immune may be less likely to use masks, to adhere to social distancing requirements, or to receive the vaccine. Recent data has shown that service members who were previously infected with COVID-19 were less likely to receive vaccination, even after adjusting for demographics, comorbidities, and other factors.8 Previously infected individuals who remain unvaccinated have been shown to have a 2.3 times higher likelihood of reinfection compared to those who were previously infected and then vaccinated,6 and these individuals may then transmit the infection to others. Public health and medical personnel should consider specifically targeting previously infected individuals for vaccination campaigns.

Author affiliations: USAMEDDAC, Fort Jackson, SC (COL Kwon, 1LT Shadwick, and COL Hall); GEIS, AFSHD, Silver Spring, MD (Dr. Bazaco, Dr. Morton, and Ms. Hartman); Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (COL Mancuso).

Disclaimer: The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Ser­vices University, the U.S. Army, or the Department of Defense.

References

  1. Nonaka CKV, Franco MM, Graf T, et al. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. Emerg Infect Dis. 2021;27(5):1522–1524.
  2. Zucman N, Uhel F, Descamps D, Roux D, Ricard JD. Severe reinfection with South African SARS-CoV-2 variant 501Y.V2: A case report. Clin Infect Dis. 2021;ciab129.
  3. Harrington D, Kele B, Pereira S, et al. Confirmed reinfection with SARS-CoV-2 variant VOC-202012/01. Clin Infect Dis. 2021;ciab104.
  4. Korea Centers for Disease Control & Prevention. Findings from Investigation and Analysis of re-positive cases. 18 May 2020. Korea Central Disaster Control and Prevention (KCDC): Seoul, Korea.
  5. Hall VJ, Foulkes S, Charlett A, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet. 2021;397(10283):1459–1469. 
  6. Cavanaugh AM, Spicer KB, Thoroughman D, Glick C, Winter K. Reduced risk of reinfection with SARS-CoV-2 after COVID-19 vaccination-Kentucky, May-June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(32):1081–1083. 
  7. Letizia AG, Ge Y, Vangeti S, et al. SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study. Lancet Respir Med. 2021;9(7):712–720.
  8. Lang MA, Stahlman S, Wells NY, et al. Disparities in COVID-19 vaccine initiation and completion among active component service members and health care personnel, 11 December 2020-12 March 2021. MSMR. 2021;28(4):2–9. 
  9. Centers for Disease Control and Prevention (CDC). Coronavirus Disease 2019 (COVID-19) 2020 Interim Case Definition, Approved April 5, 2020. Updated 5 Aug 2020. Accessed 20 April 2021. https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/
  10. US Army Public Health Center. SURVEILLANCE OF COVID-19 IN THE DEPARTMENT OF DEFENSE. Technical Information Paper No. 98-122-0720. Accessed 20 April 2021. https://phc.amedd.army.mil/PHC%20Resource%20Library/cv19-surveillance_in_the_DOD.pdf
  11. Centers for Disease Control and Prevention (CDC). Investigative criteria for suspected cases of SARS-CoV-2 reinfection (ICR). Updated 27 Oct 2020. Accessed 20 April 2021. https://www.cdc.gov/coronavirus/2019-ncov/php/invest-criteria.html
  12. Azam M, Sulistiana R, Ratnawati M, et al. Recurrent SARS-CoV-2 RNA positivity after COVID-19: a systematic review and meta-analysis. Sci Rep. 2020;10(1):20692. 
  13. Vancsa S, Dembrovszky F, Farkas N, et al. Repeated SARS-CoV-2 positivity: analysis of 123 cases. Viruses. 2021;13(3):512.
  14. Gousseff M, Penot P, Gallay L, et al. Clinical recurrences of COVID-19 symptoms after recovery: Viral relapse, reinfection or inflammatory rebound? J Infect. 2020;81(5):816–846.
  15. Tomassini S, Kotecha D, Bird PW, Folwell A, Biju S, Tang JW. Setting the criteria for SARS-CoV-2 reinfection - six possible cases. J Infect. 2021;82(2):282–327. 
  16. Rhoads D, Peaper DR, She RC, et al. College of American Pathologists (CAP) Microbiology Committee Perspective: Caution must be used in interpreting the Cycle Threshold (Ct) value. Clin Infect Dis. 2021;72(10):e685–e686.

TABLE. Characteristics of patients with recurrent positive tests for SARS-CoV-2

You also may be interested in...

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing's syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness & Combat Support

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report
<< < ... 11 12 13 > >> 
Showing results 181 - 188 Page 13 of 13
Refine your search
Last Updated: October 18, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery