Skip to main content

Military Health System

Test of Sitewide Banner

This is a test of the sitewide banner capability. In the case of an emergency, site visitors would be able to visit the news page for addition information.

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Image of Cover 3. NIANTIC, CT, UNITED STATES 06.16.2022 U.S. Army Staff Sgt. John Young, an information technology specialist assigned to Joint Forces Headquarters, Connecticut Army National Guard, works on a computer at Camp Nett, Niantic, Connecticut, June 16, 2022. Young provided threat intelligence to cyber analysts that were part of his "Blue Team" during Cyber Yankee, a cyber training exercise meant to simulate a real world environment to train mission essential tasks for cyber professionals. (U.S. Army photo by Sgt. Matthew Lucibello)


Careless responding to surveys has not been sufficiently characterized in military populations. The objective of the current study was to determine the proportion and characteristics of careless responding in a 2019 survey given to a large sample of U.S. Army soldiers at 1 installation (n = 4,892). Two bogus survey items were asked to assess careless responding. Nearly 96% of soldier respondents correctly answered both bogus items and 4.5% incorrectly answered at least 1 bogus question. In the adjusted multiple logistic regression model, race and marital status were associated with incorrect answers to bogus item questions after controlling for all other covariates. Specifically, the odds of Black respondents incorrectly answering the bogus items (adjusted odds ratio [AOR]: 2.53; 95% CI: 1.74–3.68) were more than 2.5 times those of White respondents. The recommendations that stem from the results of surveys can influence policy decisions. A large proportion of careless responses could inadvertently lead to results that are not representative of the population surveyed. Careless responding could be detected through the inclusion of bogus items in military surveys which would allow researchers to analyze how careless responses may impact outcomes of interest.

What are the new findings?

Careless responding to survey questions has not been previously studied in military populations. In a behavioral health survey with 2 bogus items used to assess careless responding, 4.5% of soldier respondents provided at least 1 incorrect answer. In an adjusted multiple logistic regression model, race (Black) and marital status (other) were associated with bogus item passage. Black respondents had odds of failing the bogus items that were more than 2.5 times those of White respondents.

What is the impact on readiness and force health protection?

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.


Public health surveys are routinely used to determine health disparities in a given population. However, less attentive responses to survey questions (“careless responding”) could introduce bias and affect the reliability and validity of health measures.1,2,3 Thus, careless responding may change the magnitude and direction of estimates which could lead to misleading results1,2,3 and erroneous public health recommendations. Previous studies on careless responding to surveys have been primarily conducted outside of public health.4–10 These studies have focused on various methods to detect, describe, and reduce careless responding.4–10 One strategy to detect careless responses to survey questions is via bogus items. A bogus item is a survey question designed to elicit the same answer from all respondents, which is typically an obvious correct answer, such as “I was born on planet Earth.” Bogus items are inexpensive to include in a survey, require minimal computation, and minimize Type I error (i.e., falsepositives) due to the high likelihood for participants to answer correctly (e.g., affirming that the American flag is “red, white, and blue” is readily answered by people who live in the U.S.).8 However, false negatives (i.e.,answering correctly for the wrong reason) may be likely if respondents answer questions in a routine pattern that has nothing to do with the questions’ content (e.g., answering “strongly agree” to everyquestion). Furthermore, incorrect responses to bogus items may not be representative of engagement throughout the survey. Instead, there may be a lapse in a respondent’s engagement or attentiveness in different sections of the survey or accidental selection of an incorrect response.8,10 Alternatively, incorrect responses to bogus items may reflect measurement error due to the bogus items used. The modal proportion of careless respondents in a typical survey is near 10%.7,8,11

The recommendations that stem from the results of surveys can influence policy decisions. However, careless responding has not yet been studied in military populations. The prevalence of careless responding and associated factors in military surveys warrants evaluation to better understand how careless responding may affect outcomes of interest.

At the time of this analysis, no prior published studies had evaluated the frequency or predictors of careless responding in the U.S. military. The primary objective of this study was to quantify careless responding in a survey of a large U.S. Army population at a single U.S. Army installation using 2 bogus items. The secondary objective was to describe the association between demographic and military characteristics and correct responses to the bogus items.


Study population

This secondary analysis used survey data from a behavioral health epidemiological consultation (EPICON) conducted at a U.S. Army installation in 2019 by the U.S. Army Public Health Center’s Division of Behavioral and Social Health Outcomes Practice. An anonymous, online, behavioral health survey was provided to soldiers via an Operational Order (OPORD) to estimate the prevalence of adverse behavioral and social health outcomes, following a perceived increase in suicidal behavior at the installation. The OPORD was distributed from the commander of the installation to subordinate units. The survey was web-based and estimated in pilot testing to require 25 minutes to complete. Survey data were collected using Verint Systems software which allowed soldier respondents to complete the survey via any web-enabled device.12 The survey was open for 28 calendar days. Respondents could start, save, and submit the survey at any point between the opening and closing dates of the survey period. Respondents were not incentivized to complete the survey (i.e., no monetary, gift, time, or other rewards were offered). Only respondents who selected “military” as their duty status in the initial screening question were included in the final dataset. Additionally, respondents who did not answer both of the bogus items were excluded from the analysis.

Respondents’ demographic and military characteristics were collected at the beginning of the survey to reduce the likelihood of omission. Demographic characteristics included sex, age group, race (White/Caucasian, Black/African American, Asian/Pacific Islander, and other/multiracial), ethnicity (Hispanic, non-Hispanic), education level, and marital status. Race and ethnicity were assessed based on responses to the question, “What is your race/ethnicity? Select all that apply.” The response options included 1) White, 2) Black or African American, 3) Hispanic, Latino, or Spanish Origin, and 4) other race, ethnicity, or origin. Respondents who selected “other race, ethnicity or origin” were classified as “other” and those who selected multiple racial groups were classified as “multiracial.” Due to small cell sizes, the “other” and “multiracial” categories were combined. Regarding ethnicity, soldiers who selected “Hispanic, Latino, or Spanish Origin” were classified as “Hispanic” regardless of other selections; the remaining soldiers were classified as “non-Hispanic.” Marital status was categorized as married, single, or other (divorced, in a relationship [seriousrelationship, but not legally married], separated, or widowed).

Military characteristics of interest included military rank (enlisted or officer), operational tempo (OPTEMPO), overall job satisfaction, and self-reported likelihood of attrition from the Army. OPTEMPO was assessed using the question, “In the past week, how many hours of work have you averaged per day?” with a scale from 0 to 24 hours and a decline to answer option. Self-reported OPTEMPO was categorized as high (11+ hours) or normal (< 11 hours). Job satisfaction was assessed using the survey question, “How satisfied are you with your job overall?” on a 5-point Likert scale ranging from very satisfied to very dissatisfied. For the purpose of analysis, responses to the job satisfaction item were collapsed into 3 categories: satisfied, neutral, or unsatisfied. Likelihood of attrition from the Army was assessed using the survey question, “How likely are you to leave the Army after your current enlistment/service period?” with a 5-point Likert scale ranging from very likely to very unlikely. Responses to the attrition item were collapsed into 3 categories: likely, neutral, or unlikely.


Two bogus items were used as indicators of careless responding in the survey. The first bogus item was placed approximately a quarter of the way through the survey and asked “What planet are you currently on?” Response options included “Saturn,” “Pluto,” “Earth,” “Mars,” or “Mercury.” The second bogus item was placed approximately three quarters of the way through the survey and asked “What color is the American Flag?” Response options included “red, green, and white”; “green, yellow, and black”; “red, white, and blue”; “blue, yellow, and white”; and “green, red, and black.” Both items provided the option to leave the response blank. A composite variable was created to categorize responses to both bogus item questions as “pass” or “fail.” If a respondent answered both correctly, then the respondent passed. If a respondent answered either question incorrectly, then the respondent failed.

Statistical Analysis

Bogus item passage (i.e., pass or fail) was stratified by demographic and military characteristics. Chi-square tests were used to identify potential differences in soldiers’ bogus item passage by demographic and military characteristics. Additionally, the relationship between the 2 bogus item questions was examined using a chi-square test to assess whether passing 1 bogus item was associated with passing the other bogus item.

The crude relationship between bogus item passage and demographic and military characteristics was assessed individually using univariate logistic regression. A multivariable logistic regression model was used to determine whether an association existed between bogus item passage and the demographic and military characteristics of interest. Covariate selection occurred a priori based on published literature related to bogus items. Covariates included in the model were sex, age group, race, ethnicity, education level, marital status, military rank, OPTEMPO, likelihood of attrition, and job satisfaction. Listwise deletion was used and p values less than .05 were considered statistically significant. All analyses were conducted using SAS/STAT software, version 9.4 (SAS InstituteInc.,Cary, NC).


An estimated 6,679 soldiers were eligible for the survey and 5,759 respondents completed surveys during the 1-month data collection period (Figure). Eighty-two respondents (1.4%) were excluded because they reported being either a contractor or a civilian; and 785 (13.6%) respondents were excluded because of missing data on either of the 2 bogus items. The final study population consisted of 4,892 respondents, which represented an estimated response rate of 73.2%.

Respondents were primarily male (85.8%), 17–24 years old (50.3%), White (60.4%), Non-Hispanic (82.2%), recipients of a high school diploma or less (48.3%), enlisted (67.9%), and married (45.5%) (Table 1). The overall median response time was 26 minutes (mean=80 minutes; standard deviation=728 minutes; range=1–32,963 minutes). The vast majority (95.5%) of respondents answered both bogus items correctly (“pass”) and 4.5% answered at least 1 incorrectly (“fail”). The first and second bogus items were answered correctly by 96.6% and 98.1% of respondents, respectively.

Respondents’ race, marital status, military rank, and individual bogus item responses were significantly associated with the bogus item outcome at the bivariate level (Table 1). Sex, age group, ethnicity, education status, OPTEMPO, attrition, and job satisfaction were not significantly associated with the bogus item outcome. Respondents who failed the first bogus item had odds of failing the second bogus item that were approximately 30 times (odds ratio [OR]: 29.9, 95% confidence interval [CI]: 19.2–46.5) that of respondents who passed the first item (data not shown).

A total of 4,396 respondents (89.9% of the full sample) with complete information for each covariate were included in the adjusted multivariable logistic regression model after listwise deletion. Rank was originally included in the multivariable logistic regression model; however, because this variable was missing for 79.5% of the total listwise deleted observations, it was removed from the final model. Race and marital status were the only variables significantly associated with bogus item passage in the adjusted multivariable logistic regression model (Table 2). Black respondents had odds of failing the bogus items that were more than 2.5 times (adjusted OR [AOR]: 2.53; 95% CI: 1.74–3.68) that of White respondents after adjusting for sex, age group, marital status, ethnicity, education level, OPTEMPO, job satisfaction, and likelihood of Army attrition. Respondents with a marital status categorized as “other” had odds of failing the bogus items that were 1.7 times (AOR: 1.73; 95% CI: 1.19–2.53) that of single respondents after adjusting for covariates.

A sensitivity analysis was performed comparing results of models with and without rank. Results of the 2 models were similar with the exception of the relationship between marital status and the outcome variable; in the model that included rank, marital status was not significantly associated with bogus item passage. Overall, listwise deletion led to the removal of 10.1% of respondents from the multivariable logistic regression analysis. A comparison of those respondents excluded from the model compared to those retained in the analysis showed that the 2 sets of respondents did not differ by demographics or bogus item passage.

Editorial Comment

This study sought to determine the characteristics of careless respondents using bogus items in a survey administered to a sample of U.S. Army soldiers at 1 installation. While it is not feasible to estimate the true prevalence of careless responding across the Department of Defense (DOD) or the Army, this study found that 4.5% of survey respondents failed either of the bogus items and 95.5% passed both bogus items. Prior research estimated the proportion of careless responding in most studies to be around 10% (3%–46%)7,8,11; however, in this study, the proportion of careless responding was lower. The heterogeneous prevalence of careless responding across studies is likely due to the variability in how careless responding is operationalized, differences in survey lengths, study populations used (e.g., AmazonMTurk [online], psychology undergraduate students), and the methods used to categorize careless responding (e.g., data driven methods, bogus items, instructed manipulation checks).7,8,11 The lower proportion of careless responding observed in the current study could potentially be due to reasons such as soldiers being more interested in this survey topic, wanting to make a difference via their responses, command pressure, or responding to bogus items not validated by prior literature.5

This study found greater odds of failing the 2 bogus items among Black respondents when compared to White respondents and greater odds for those categorized as “other” marital status when compared to single respondents. One prior web-based study of 2,000 adults from U.S. households using methods other than bogus items found that Hispanic respondents and unmarried respondents were more likely to be categorized as careless responders in bivariate logistic regression models, although only age and gender were significant predictors of categorization in adjusted models.13 A 2019 dissertation using 1 instructed manipulation check question found that non-Hispanic Black and White respondents had about 1.2 times and 1.1 times the odds of being categorized as careless responders compared to Hispanic respondents, respectively.14 It is unclear why those who reported their race as Black in the current study had higher odds of failing the bogus items, as there are few other published studies that document associations between race/ethnicity and careless responding.13,14

This study was subject to numerous limitations. First, this study only applied 1 method (i.e., bogus items) to determine careless responding. Second, this study did not compare the demographic and military characteristics of the respondents who did not answer both bogus items to those who did answer both bogus items, which could have impacted the interpretation of the results if the 2 were different. Third, listwise deletion led to the exclusion of 10.1% of respondents from the multivariable logistic regression analysis. However, a comparison of those respondents excluded from the model compared to those retained in the analysis showed that the 2 sets of respondents did not differ on demographics or bogus item passage. Fourth, bogus items could reflect careless responding across the entire survey or capture survey inattention at a specific point in time.4,10,15 This study was able to detect careless responding at only 2 specific points in the survey. A combination of methods may be more suitable for detecting careless response bias, such as bogus items, instructed manipulation checks, self-report items, etc. Response time is an inexpensive way to screen for careless responders and assumes a minimum time required to complete the survey; however, there is no clear cutoff point.8,11 Fifth, incorrect answers to 1 question (e.g., “What planet are you on?”) may be less about attention and more about sarcasm, where the responses were influenced by the tone and nature of the bogus question and answered incorrectly on purpose.8,16 A sarcastic comment was indicated by 4 (<0.1%) soldiers in the open-ended comment at the end of the survey. Sixth, no identifying information (e.g., name, social security number, or IP address) was collected. Therefore, it is unclear if respondents completed multiple surveys. In subsequent EPICON surveys, a question that asks, “is this the first time you have taken this particular survey?” has been included to identify surveys completed by the same individual.

Several limitations were related to the bogus items themselves. First, the bogus items employed in this study were not validated by previously published work. As a result, measurement error due to the 2 bogus items may have contributed to the higher pass rate found in this study (95.5%) compared to other studies (approximately 90%).7,8,11 Many studies use bogus items that produce a similar response among all respondents, so that an incorrect response is likely due to careless responding.8 Subsequent articles by Qualtrics on published work from Vannette and Krosnick have shown that the inclusion of bogus items may affect the quality of subsequent answers on surveys.17,18 However, how the bogus items impacted later responses in the current study is unknown. Second, the correct response to both bogus items fell in the middle of each 5-item multiple choice response list. An option to randomize the order of the correct response to each bogus item was not used. Straight-lining (i.e., selecting responses in a predictable pattern) may have occurred and option order bias (i.e., the order of the answer options influences the respondent’s answer) may also have been present. If the first option had been correct, however, the order would have limited the potential for detecting primacy bias (i.e., a greater likelihood to select the first response in a multiplechoice question). Third, soldiers may have responded based on pressure from leaders, a factor which may have biased engagement in the survey. The survey for this analysis did not measure whether soldiers were pressured to take the survey. To adjust for this limitation, a question on leadership pressure has been incorporated into future EPICON surveys. Lastly, the soldiers who responded to this survey may not be representative of the overall U.S. Army or DoD populations, and the findings may not be generalizable as a result.

There are several potential solutions to reduce careless responding among soldiers. First, surveys need to clearly state why the survey is being done and how results of the survey will be used to improve the installation(s). If soldiers are unclear about the purpose and the intent of a survey, careless responding may be more likely to occur.8 Second, multiple bogus items should be incorporated at different points throughout the survey and the correct response order should be randomized.4,10 Multiple methods should be used to estimate careless responding, where possible.4,10,11 Third, if bogus items or other items intended to detect careless responding are used, then the results should be stratified by careless responding to examine if any effect exists due to removing careless responders from the study population.10 Some research has shown that a demographic bias may be introduced if certain demographic groups are more likely to be classified as careless responders and excluded.18 Fourth, a representative sample could be selected instead of targeting all soldiers at an installation. Selecting a subset of the population will reduce survey fatigue by ensuring that only a fraction of soldiers receive each survey.19 Fifth, it should be emphasized that most surveys are voluntary and that duty time cannot be extended to force participation. Lastly, surveys should be pared down to only the most essential questions to save soldier time.8 Decreased survey length assists with improving respondent willingness to participate and may reduce multitasking.

Researchers must thoughtfully anticipate the type of careless responding that may be present in their survey data and use appropriate methods to detect potential careless responses.5,10 Although a small proportion of respondents provided careless responses, careless responding is just one of many types of bias which can pose a threat to survey validity.

Author affiliations: Division of Behavioral and Social Health Outcomes Practice, U.S. Army Public Health Center, Aberdeen Proving Ground, MD (Mr. Smith, Dr. Beymer, Dr. Schaughency); General Dynamics Information Technology Inc., Falls Church, VA (Mr. Smith)

Disclaimer: The views expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy of the Department of Defense, Department of the Army, U.S. Army Medical Department or the U.S. Government. The mention of any non-federal entity and/or its products is not to be construed or interpreted, in any manner, as federal endorsement of that non-federal entity or its products.


1. Huang JL, Liu M, Bowling NA. Insufficient effort responding: Examining an insidious confound in survey data. J Applied Psychol. 2015;100(3):828–845.

2. Nichols, A.L. and Edlund, J.E. Why don’t we care more about carelessness? Understanding the causes and consequences of careless participants. Int J of Soc Res Method. 2020; 23(6): 625–638.

3. McGrath RE, Mitchell M, Kim BH, Hough L. Evidence for response bias as a source of error variance in applied assessment. Psychol Bul. 2010;136(3):450.

4. Berinsky A, Margolis M, Sances M. Separating the shirkers from the workers? Making sure respondents pay attention on self‐administered surveys. Am J Pol Science. 2014;58(3):739–753.

5. Curran P. Methods for the detection of carelessly invalid responses in survey data. J Exp Soc Psychol. 2016;66:4–19.

6. Johnson J. Ascertaining the validity of individual protocols from web-based personality inventories. J Res Personal. 2005;39(1):103–129.

7. Maniaci M, Rogge R. Caring about carelessness: Participant inattention and its effects on research. J Res Personal. 2014;48:61–83.

8. Meade A, Craig S. Identifying careless responses in survey data. Psychol Methods. 2012;17(3):437.

9. Oppenheimer D, Meyvis T, Davidenko N. Instructional manipulation checks: Detecting satisficing to increase statistical power. J Exp Soc Psychol. 2009;45(4):867–872.

10. DeSimone J, Harms P, DeSimone A. Best practice recommendations for data screening. J Org Behavior. 2015;36(2):171–181.

11. Huang J, Curran P, Keeney J, Poposki E, DeShon R. Detecting and deterring insufficient effort responding to surveys. J Bus Psychol. 2012;27(1):99–114.

12. Verint Enterprise Experience [computer program]. Melville, NY:Verint; 2017.

13. Schneider S, May M, Stone AA. Careless responding in internet-based quality of life assessments. Qual Life Res. 2018;27(4):1077–1088.

14. Melipillán EM. Careless survey respondents: Approaches to identify and reduce their negative impacts on survey estimates. [dissertation]. Ann Arbor: University of Michigan; 2019.

15. Anduiza E, Galais C. Answering without reading: IMCs and strong satisficing in online surveys. Int J Pub Opi Research. 2017;29(3):497–519.

16. Nichols D, Greene R, Schmolck P. Criteria for assessing inconsistent patterns of item endorsement on the MMPI: Rationale, development, and empirical trials. J Clin Psychol. 1989;45(2):239–250.

17. Qualtrics. Using Attention Checks in Your Surveys May Harm Data Quality. 2017. Accessed 22 September 2021.

18. Vannette D, Krosnick J. Answering questions: A Comparison of Survey Satisficing and Mindlessness. In Ie A, Ngnoumen CT, Langer EJ, eds. The Wiley Blackwell Handbook of Mindfulness. West Sussex, UK: John Wiley & Sons Ltd. 2014:312–327.

19. Office of the Secretary of Defense. Implementation of Department of Defense Survey Burden Action Plan - Reducing Survey Burden, Cost and Duplication. 2016. Accessed 22 September 2021.

FIGURE. Study population exclusion flow chart

TABLE 1. Demographic and military characteristics of U.S. Army installation survey respondents, 2019 (n=4,892)

TABLE 2. Demographic and military characteristics on responses to bogus items among 4,396 Army soldiers at 1 Army installation in 2019b

You also may be interested in...

Hospitalizations, active component, U.S. Armed Forces, 2018

Cover 2

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Absolute and relative morbidity burdens attributable to various illnesses and injuries, non-service member beneficiaries of the Military Health System, 2018

Cover 4

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and health care burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018

Cover 1

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and healthcare burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Cover 2

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2018

Cover 2

Morbidity burdens attributable to various illnesses and injuries, deployed active and reserve component service members, U.S. Armed Forces, 2018

Cover 1

Among service members deployed during 2018, injury/poisoning, musculoskeletal diseases, and signs/symptoms accounted for more than half of the total health care burden while deployed. Compared to the distribution of major burden of disease categories documented in garrison, a relatively greater proportion of in-theater medical encounters due to respiratory infections, skin diseases, infectious/parasitic diseases, and digestive diseases was documented.

Ambulatory visits, active component, U.S. Armed Forces, 2018

Cover 1

Musculoskeletal disorders and mental health disorders accounted for more than half (52.6%) of all illness- and injury-related ambulatory encounters among active component service members in 2018. Since 2014, the number of ambulatory visits for mental health disorders has decreased, while the numbers of ambulatory visits for musculoskeletal system/connective tissue disorders, nervous system and sense organ disorders, and respiratory system disorders have increased.

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to health care providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal—the white-tailed deer.

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through Sept., and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017


This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Page 14 of 15 , showing items 196 - 210
First < ... 11 12 13 14 15 > Last 
Refine your search
Last Updated: August 17, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery