Back to Top Skip to main content

Brief Report: Diagnoses of Scarlet Fever in Military Health System (MHS) Beneficiaries Under 17 Years of Age Across the MHS and in England, 2013–2018

A maculopapular rash, a hallmark symptom of measles, on an infant’s face. Credit: CDC/Jim Goodson, M.P.H. A maculopapular rash, a hallmark symptom of measles, on an infant’s face. Credit: CDC/Jim Goodson, M.P.H.

Recommended Content:

Medical Surveillance Monthly Report

BACKGROUND

Scarlet fever is an illness caused by infection with Streptococcus pyogenes that most commonly occurs in childhood (peak age = 7–8 years old). It is characterized by an erythematous, sandpaper-like rash due to one of several erythrogenic exotoxins produced by group A streptococci. Scarlet fever typically occurs with streptococcal pharyngitis but may rarely develop with skin or wound infections. Aside from the widespread rash, scarlet fever has the same sequelae and treatment as streptococcal pharyngitis without a rash. Cases typically follow a seasonal pattern, more commonly arising in late fall, winter, and spring. S. pyogenes has over 240 distinct serotypes based on M-protein serotype and the more discriminating M-protein gene sequencing (known as emm types).1

Because scarlet fever is a reportable disease in England, a large increase in incident cases was identified in 2014. This increase has continued to persist throughout the country. Public health surveillance identified a 3- to 4-fold increase in incidence of scarlet fever, which has significantly impacted schools and nurseries in the country.2 Strains of S. pyogenes that were emm typed during this time period demonstrated a wide variety of M-protein gene sequences, but a new emm1 strain (M1UK) that is genotypically distinct from other pandemic emm1 isolates has increased in prevalence in England as invasive streptococcal disease has also risen.3,4 Although increased incidence of scarlet fever had been described in parts of Asia since 2008, England was the first European country to detect a sudden large-scale increase in cases, and this discovery has led to concern about similar widespread outbreaks occurring in other areas of the world.2

Scarlet fever is not a reportable disease in the U.S.,5 and military surveillance currently does not routinely perform M-protein gene sequencing on group A streptococcus isolates. However, diagnoses of scarlet fever can be identified throughout the Military Health System (MHS) using International Classification of Diseases, 9th and 10th Revision (ICD-9 and ICD-10, respectively) codes. The objectives of this brief report were to review scarlet fever incidence in the MHS among patients under 17 years of age and to identify any large spikes in annual cases at military treatment facilities, particularly at the bases located in England.

METHODS

The surveillance period was 1 January 2013 through 31 December 2018. The surveillance population consisted of beneficiaries of the MHS who were under 17 years of age at the time of the incident diagnosis. Diagnoses of scarlet fever were ascertained from the Defense Medical Surveillance System, which includes administrative records of all medical encounters of individuals who received care in fixed (i.e., not deployed or at sea) medical facilities in the MHS or in civilian facilities when care was reimbursed by the MHS (i.e., Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care). For surveillance purposes, an incident case of scarlet fever was defined by a qualifying ICD-9 or ICD-10 diagnosis code (Table 1) in any diagnostic position of a record of a hospitalization or an outpatient medical encounter. The incidence date was considered the date of the first hospitalization or outpatient medical encounter that included a case-defining diagnosis. An individual could be counted as an incident case of scarlet fever only once during the surveillance period; any beneficiary with a diagnosis of scarlet fever before the surveillance period was excluded from the analysis. Counts of scarlet fever diagnoses and incidence rates were calculated for each year of the surveillance period. Incidence rates were calculated as incident scarlet fever diagnoses per 10,000 person-years (p-yrs) and were stratified by selected demographic characteristics. Denominators for incidence rate calculations were calculated by identifying the number of beneficiaries who had at least 1 medical encounter during each year of the surveillance period. Diagnoses and incidence rates were calculated for the entire MHS in the primary analysis.

A secondary analysis was designed to identify a possible increasing trend in scarlet fever diagnoses in MHS beneficiaries receiving care in England during the surveillance period. For this analysis, cases were restricted to those who received a scarlet fever diagnosis at a facility located in England as identified through the Defense Medical Information System Identifier.

RESULTS

During the 6-year surveillance period, a total of 7,080 MHS beneficiaries under age 17 received an incident diagnosis of scarlet fever; 85 incident cases of scarlet fever were identified in MHS beneficiaries receiving care in England. A slightly greater proportion of cases was diagnosed among male beneficiaries, while the vast majority of cases occurred in beneficiaries under age 10 (Table 2). Across all MHS beneficiaries, the greatest number of scarlet fever cases occurred in 2013 (n=1,366) and the lowest number of cases occurred in 2018 (n=871). In contrast, in MHS beneficiaries receiving care in England, the greatest number of scarlet fever cases occurred in 2015 (n=20) and the lowest number of cases in 2017 (n=7) (Figure).
Across the MHS as a whole, crude annual incidence rates of scarlet fever diagnoses were relatively stable from 2013 through 2016 and then declined throughout the remainder of the surveillance period. In contrast, crude annual incidence rates among MHS beneficiaries in England increased almost 80% from 2013 through 2015. Subsequently, crude incidence rates declined slightly in 2016 to 30.8 cases per 10,000 p-yrs before declining to their lowest rates during the period in 2017. Rates increased again in 2018 to 23.9 cases per 10,000 p-yrs (Figure).

EDITORIAL COMMENT

In 2014, England experienced a large and unexpected increase in cases of scarlet fever over the previous year, and the increase in cases continued unabated through 2018. Results of the current analysis suggest that a similar increase in cases was seen in MHS beneficiaries in England between 2013 and 2015 and again in 2018, although scarlet fever incidence rates across the entire MHS were relatively stable during the same period.

While this brief report demonstrates that MHS beneficiaries in England did have increased incidence of scarlet fever during a period while England was experiencing an outbreak, it is more difficult to interpret scarlet fever rates across the MHS. A comparison between rates in the entire MHS cohort and the MHS England cohort could be impacted by differential coding practices in England versus other locations in the MHS. Because scarlet fever is not a reportable illness in the U.S., physicians may be more likely to code a streptococcal illness (e.g., strep pharyngitis) and rash separately, rather than using a specific scarlet fever code. Future analyses of all streptococcal infection diagnoses could provide some clarification of this issue. In addition, it is likely that medical providers in England were aware of the ongoing outbreak there and thus more likely to detect and diagnose scarlet fever cases when they presented in American beneficiaries (i.e., detection bias).

Although the increase in incidence rates of scarlet fever in England is striking, it is important to recognize that the increase in the number of cases from year to year was relatively small. Only 85 cases were ascertained over 6 years among MHS beneficiaries in England, and the largest increase in the absolute number of cases was 6 cases from 2017–2018. When the numbers of cases used to compute rates are small, those rates can have poor reliability. This significant limitation should be considered when interpreting these data. Another limitation is that denominators used in the calculation of incidence rates were based on the number of beneficiaries who sought care at least once during the year rather than the number of beneficiaries eligible for care. Therefore, the denominator used for these calculations is likely an underestimate of the true denominator.

Fluctuations in crude annual rates of scarlet fever are likely due to a number of factors that include the number and emergence of new strep A strains, how widely those strains may be circulating, and the degree of immunity to those strains in a susceptible population. One possible reason for the increase in England has been attributed to a new emm1 strain of S. pyogenes,3 but it is unclear whether, and to what extent, this may have impacted rates of scarlet fever in MHS beneficiaries. Laboratory surveillance of this and other emerging strains in military populations may be warranted.
Wherever DoD personnel and their families are stationed, they are at risk from infectious outbreaks in the local community and/or country. This brief report provides an example of the importance of monitoring local public health reports to provide optimal medical care to active duty members and MHS beneficiaries.

Author affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (Maj Sayers); Defense Health Agency, Armed Forces Health Surveillance Branch (Mr. Bova, Dr. Clark).

REFERENCES

1.  Committee on Infectious Diseases, American Academy of Pediatrics. Red Book: 2018–2021 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018.
2.  Lamagni T, Guy R, Chand M, et al. Resurgence of scarlet fever in England, 2014–16: a population-based surveillance study. Lancet Infect Dis. 2018;18(2):180–187.
3.  Lynskey NN, Jauneikaite E, Li HK, et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect Dis. 2019;19(11):1209–1218.
4.  Brouwer S, Lacey JA, You Y, Davies MR, Walker MJ. Scarlet fever changes its spots. Lancet Infect Dis. 2019;19(11):1154–1155.
5.  Centers for Disease Control and Prevention. Group A streptococcal (GAS) disease. https://www.cdc.gov/groupastrep/surveillance.html. Accessed 24 September 2019.

Numbers of incident cases and crude incidence rates of scarlet fever, by location, MHS beneficiaries under 17 years of age, 2013–2018

ICD-9 and ICD-10 codes used to identify scarlet fever cases  

Counts and percentages of scarlet fever cases, by age and sex, all MHS beneficiaries and beneficiaries within England, 2013–2018

You also may be interested in...

Air Evacuation of Service Members for COVID-19 in U.S. Central Command and U.S. European Command From 11 March 2020 Through 30 September 2020

Article
12/1/2020
3-3D_Influenza_blue_no_key_pieslice_med: This illustration provides a 3D graphical representation of a generic Influenza virion’s ultrastructure, and is not specific to a seasonal, avian or 2009 H1N1 virus. (Credit: CDC/ Douglas Jordan)

Recommended Content:

Medical Surveillance Monthly Report

Cases of Coronavirus Disease 2019 and Comorbidities Among Military Health System Beneficiaries, 1 January 2020 through 30 September 2020

Article
12/1/2020
1-6179898: A U.S. Army nurse paratrooper assigned to the 173rd Brigade Support Battalion, 173rd Airborne Brigade provides patient care in support of preventative efforts against COVID-19 on Caserma Del Din, Italy, April 20, 2020. The 173rd Airborne Brigade is the U.S. Army's Contingency Response Force in Europe, providing rapidly deployable forces to the United States Europe, Africa and Central Command areas of responsibility. Forward deployed across Italy and Germany, the brigade routinely trains alongside NATO allies and partners to build partnerships and strengthen the alliance. (U.S. Army photo by Spc. Ryan Lucas)

Recommended Content:

Medical Surveillance Monthly Report

SARS-CoV-2 and Influenza Coinfection in a Deployed Military Setting—Two Case Reports

Article
12/1/2020
4-2871: This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. A novel coronavirus, named Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019. The illness caused by this virus has been named coronavirus disease 2019 (COVID-19). (Credit: Alissa Eckert, MSMI; Dan Higgins, MAMS)

Recommended Content:

Medical Surveillance Monthly Report

Characteristics of U.S. Army Beneficiary Cases of COVID-19 in Europe, 12 March 2020–17 April 2020

Article
12/1/2020
2-200410-F-BT441-2099: Three U.S. Air Force medical Airmen exit a C-17 Globemaster III aircraft following the first-ever operational use of the Transport Isolation System at Ramstein Air Base, Germany, April 10, 2020. The TIS is an infectious disease containment unit designed to minimize contamination risk to aircrew and medical attendants, while allowing in-flight medical care for patients afflicted by a disease--in this case, COVID-19. (U.S. Air Force photo by Staff Sgt. Devin Nothstine)

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2015–June 2020

Article
11/1/2020
Chill factor, improper warm up, and inadequate clothing can contribute to the risk for cold injuries. Experts encourage everyone, whether acclimated to cold weather or not, to protect against cold temperature injuries this winter. (U.S. Marine Corps photo by Lance Cpl. Cody Rowe)

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2015–June 2020

Recommended Content:

Medical Surveillance Monthly Report

Fibromyalgia: Prevalence and Burden of Disease Among Active Component Service Fibromyalgia: Prevalence and Burden of Disease Among Active Component Service Members, U.S. Armed Forces, 2018

Article
11/1/2020
Back pain. Credit: iStock.com/Albina Gavrilovic

Recommended Content:

Medical Surveillance Monthly Report

Acute Respiratory Infections Among Active Component Service Members Who Use Combustible Tobacco Products and/or E-cigarette/Vaping Products, U.S. Armed Forces, 2018–2019

Article
11/1/2020
A Team Offutt Airman vapes in an authorized smoking area during a break Nov. 7. As of Oct. 29, 2019, over 1,800 lung injury cases and 37 deaths have been reported to the Centers for Disease Control and Prevention and the only commonality among all cases is the patient’s use of e-cigarette or vaping products. Offutt Airmen looking for support quitting can schedule an appointment with a behavioral health consultant or primary care manager by calling 402-232-2273. To schedule a unit briefing on the dangers of vaping and options for quitting, call 402-294-5977. Outside assistance, including text-message support, is available by visiting www.smokefree.gov, www.thetruth.com or www.ycq2.org.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2015–April 2020

Article
10/1/2020
NORFOLK (Oct. 15, 2019) Lt. Sipriano Marte administers an influenza vaccination to Airman Tyler French in the intensive care unit aboard the Wasp-class amphibious assault ship USS Kearsarge (LHD 3). Kearsarge is underway conducting routine training. (U.S. Navy photo by Mass Communication Specialist Petty Officer 3rd Class Jacob Vermeulen/Released)

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2015–April 2020

Recommended Content:

Medical Surveillance Monthly Report

Acute and Chronic Pancreatitis, Active Component, U.S. Armed Forces, 2004–2018

Article
10/1/2020
Istock 916163392 3D illustration of human body organs (pancreas).

Acute and Chronic Pancreatitis, Active Component, U.S. Armed Forces, 2004–2018

Recommended Content:

Medical Surveillance Monthly Report

Characterizing the Contribution of Chronic Pain Diagnoses to the Neurologic Burden of Disease, Active Component, U.S. Armed Forces, 2009–2018

Article
10/1/2020
Belgian Medical Component 1st Lt. Olivier, a physical therapist, adjusts the neck of a pilot from the 332nd Air Expeditionary Wing, June 22, 2017, in Southwest Asia. Aircrew from the 332nd AEW received treatment for pains associated with flying high performance aircraft through a partnership program with the Belgian Medical Component. (U.S. Air Force photo/Senior Airman Damon Kasberg)

Recommended Content:

Medical Surveillance Monthly Report

Update: Surveillance of Spotted Fever Rickettsioses at Army Installations in the U.S. Central and Atlantic Regions, 2012–2018

Article
9/1/2020
This photograph depicts a dorsal view of a female Gulf Coast tick, Amblyomma maculatum. This tick species is a known vector for Rickettsial organisms, Rickettsia parkeri, and Ehrlichia ruminantium, formerly Cowdria ruminantium. R. parkeri is a member of the spotted fever group of rickettsial diseases affecting humans, while E. ruminantium causes heartwater disease, an infectious, noncontagious, tick-borne disease of domestic, and wild ruminants, including cattle, sheep, goats, antelope, and buffalo. Note the considerably smaller scutum, or shield covering only a small region of its dorsal abdomen, unlike its male counterpart, an example of which can be seen in PHIL 10877, and 10878, which sports a scutum covering its entire dorsal abdomen. The smaller scutum in the female enables its abdomen to expand considerably, leading to an engorged appearance after ingesting its host blood meal. (Content provider: CDC/ Dr. Christopher Paddock)

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2015–June 2020

Article
9/1/2020
Spc. Jayson Sanchez of the Army Reserve’s 77th Sustainment Brigade receives a blood draw from phlebotomist Nikole Horrell during the mass medical-readiness event hosted Aug. 8-9, 2015 by the Army Reserve’s 99th Regional Support Command at Joint Base McGuire-Dix-Lakehurst, N.J., in an effort to increase Soldier readiness throughout the northeastern United States. More than 300 Army Reserve and Army National Guard Soldiers had the opportunity to take care of their Periodic Health Assessments, dental exams, vision screenings, HIV blood draws, immunizations, hearing tests, LOD processing and temporary/permanent profiles during the event. (U.S. Army photo by Sgt. Salvatore Ottaviano, 99th Readiness Division)

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Inguinal Hernia and Repair Procedures and Rate of Subsequent Pain Diagnoses, Active Component Service Members, U.S. Armed Forces, 2010–2019

Article
9/1/2020
Senegalese and Vermont National Guard medical care professionals repair a hernia at the Hopital de la Paix in Ziguinchor, Senegal, Feb. 14, 2018. Vermont Guardsmen work alongside Senegalese medical personnel to obtain real-world experience while providing valuable medical services as part of a Medical Readiness Training Exercise. (U.S. Army National Guard photo by Sgt. Avery Cunningham)

Recommended Content:

Medical Surveillance Monthly Report

DHA recognizes 25 years of AFHSB's health surveillance journal

Article
8/12/2020
Medical technicians wearing masks and entering information on a computer

25 Years of Surveillance Reporting in Monthly Journal

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Article
8/1/2020
This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Stephanie Rossow).

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 8

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.