Skip to main content

Military Health System

Test of Sitewide Banner

This is a test of the sitewide banner capability. In the case of an emergency, site visitors would be able to visit the news page for addition information.

Commentary: The Warrior Heat- and Exertion-Related Event Collaborative and the Fort Benning Heat Center

Image of Commentary: The Warrior Heat- and Exertion-Related Event Collaborative and the Fort Benning Heat Center. Commentary: The Warrior Heat- and Exertion-Related Event Collaborative and the Fort Benning Heat Center

Background

The effects of extreme environmental heat on the health and performance of the warfighter have been documented for centuries.1,2 The U.S. military has conducted and supported research aimed at reducing the impact of heat stress since World War II, greatly advancing our understanding of the physiology of heat stress, the pathophysiology of exertional heat illness (EHI), and the associated epidemiology and risk factors.3–5 However, weather is an established mission variable and the warfighter needs to be prepared to conduct operations and training in adverse environmental conditions.6 The combination of environmental heat and/or high metabolic heat production coupled with clothing and equipment factors practically guarantees that EHI casualties will occur. As detailed in this issue of the MSMR, EHI, hyponatremia, and rhabdomyolysis continue to affect individual warfighters and pose a significant burden on the military medical system.

In June 2016, a soldier died of hyponatremia during Ranger School training.7 This was the eighth death due to hyponatremia or exertional heat stroke at Fort Benning since 1998 and illustrates what has been termed the "tragedy loop". 8 In other words, when such a death occurs, there is renewed interest in prevention through education and training as well as in the medical management of EHI casualties. That response is usually effective, but, with the passage of time, there is a loss of institutional memory as experienced leaders and trainers are reassigned and replaced by less experienced personnel. This loss may culminate in another death, and the cycle would begin anew. With 1 exception, all of the heat illness–related deaths at Fort Benning in the past 22 years have illustrated that the tragedy loop follows a 2- to 3-year time course.8

In the wake of the most recent death, clinicians at Martin Army Community Hospital (MACH) recognized that a more sustainable approach was necessary to break the tragedy loop and to prevent future deaths due to heat illness. In 2017, Fort Benning hosted the first "Heat Forum", which brought together clinicians, researchers, and leaders from across the Army. At the same time, an ad hoc "Heat Center" was created, consisting of a group of dedicated clinicians and other health care professionals who focused their efforts on improving prevention efforts, standardizing medical management, and facilitating research. Ultimately, the participants realized that this ad hoc approach was not sustainable, as it depended on busy clinicians being able to devote time outside their clinical responsibilities. In 2019, with the support of leaders at the Army Office of the Surgeon General, Regional Health Command-Atlantic, and the Consortium for Health and Military Performance (CHAMP) at the Uniformed Services University of the Health Sciences (USUHS), the Warrior Heat- and Exertion-Related Event Collaborative (WHEC) and the Fort Benning Heat Center were created. The fourth annual Heat Forum took place that same year, and the meeting has expanded to include attendees and participants from across the Department of Defense (DOD).

The WHEC is a joint service, multidisciplinary executive advisory board composed of representatives from CHAMP, the U.S. Army Research Institute of Environmental Medicine (USARIEM), the Army Public Health Center (APHC), the Army Training and Doctrine Command, the Departments of the Navy and the Air Force, and selected civilian institutions. A key issue is the lack of coordination and synchronization of policies and procedures not only between the services, but also between installations within a given service. An objective of the WHEC will be to develop clinical practice guidelines that reflect the best evidence for preventing, mitigating, risk stratifying, and improving the management of EHI and related illnesses in warfighters. Importantly, the WHEC will maintain a web-based repository of clinical practice guidelines, information papers, and an "ask the expert" function to assist in providing up-to-date information to address prevention, mitigation, and return-to-duty concerns. The WHEC website can be accessed at https://www.hprc-online.org/resources-partners/whec.

The WHEC will also provide guidance and leadership, assist in coordinating and facilitating research, and collaborate with service-specific research centers, including the Heat Center at Fort Benning. The Army Surgeon General's Office tasking was simply to do all possible to decrease the morbidity and mortality of EHI and related conditions and end the aforementioned tragedy loop.

For each of the last 4 years, owing in part to the total number of trainees, the environmental conditions, and the physical demands of training, Fort Benning has experienced the highest numbers of EHIs of any installation in the DOD, so positioning the first field operating agency Heat Center at Fort Benning was a logical decision.9 Three areas of focus of the Heat Center have been identified—prevention, medical management, and research.

Prevention is the foundation of the Center’s efforts. Through the annual Heat Forum, senior leader engagements, and the training of leaders and cadre down to the level of sergeants and staff sergeants, Heat Center staff provide education and training to support prevention efforts. A current initiative of the Heat Center is the creation and inclusion of EHI prevention training for all cadre and drill sergeants during their inprocessing and instructor orientation at Fort Benning. As heat illness treatment is often not covered in medical curricula, education of new MACH staff supports the medical management line of effort.

Over the years, MACH staff have refined treatment protocols for the medical management of EHI casualties. The other services, in particular the Navy in support of Marine Corps training, have also developed unique and successful strategies for the management of EHI and related conditions. The WHEC aims to share these protocols, from point of injury through return to duty, with all installations and services. The goal is to coordinate best practices across the DOD to mitigate EHI and related conditions across the DOD. The WHEC, leveraging clinical consultation in the National Capital Region and across the U.S., will activate and commission a clinical consultation hotline to assist with challenging EHI case decisions.

Lastly, while USARIEM, USUHS, and the APHC have a long history of exceptional laboratory-based and epidemiological research on the effects of heat stress on the warfighter, because of a lack of access to heat casualty patients, they have been limited in their ability to conduct clinically meaningful research on this population. Given the sheer volume of EHI casualties at Fort Benning, active research collaborations between the Heat Center, USUHS, USARIEM, and the U.S. Army Medical Material Development Agency have been established.

Given the demands of military training, it is an unrealistic goal to prevent all EHI in the military. To be prepared to fight anywhere, the warfighter must be trained in a range of conditions, including hot environments. The WHEC and the Heat Center are ideally positioned to support efforts to reduce the severity of EHI as much as possible and to eliminate all heat-related deaths in the military and end the tragedy loop.

Author affiliations: Martin Army Community Hospital, Fort Benning, GA (MAJ DeGroot); the Uniformed Services University of the Health Sciences, Bethesda, MD (Dr. O’Connor).

References

  1. Goldman RF. Introduction to heat-related problems in military operations. In: Pandolf KB, Burr RE, eds. Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:3–49.
  2. Sanders E. Heat of battle takes toll on U.S. Forces. Los Angeles Times. 11 Aug. 2004. https://www.latimes.com/archives/la-xpm-2004-aug-11-fg-summer11-story.html. Accessed 19 Feb. 2020.
  3. Adolph EF. Physiology of Man in the Desert. New York, NY: Interscience Publishers; 1947.
  4. Yaglou CP, Minard D. Control of heat casualties at military training centers. AMA Arch Ind Health. 1957;16(4):302–316.
  5. Pandolf KB, Francesconi R, Sawka MN, et al. United States Army Research Institute of Environmental Medicine: Warfighter research focusing on the past 25 years. Adv Physiol Educ. 2011;35(4):353–360.
  6. Headquarters, Department of the Army. Army Doctrine Publication 3-0. Unified Land Operations. 6 October 2017.
  7. Lilley K. West Point grad dies after hospitalization during Ranger School. Army Times. 28 July 2016. https://www.armytimes.com/news/your-army/2016/07/28/west-point-grad-dies-afterhospitalization-during-ranger-school/. Accessed 19 Feb. 2020.
  8. Galer M. The Heat Center Initiative. U.S. Army, Risk Management Quarterly. 2019;Spring:6–8.
  9. Armed Forces Health Surveillance Branch. Update: Heat illness, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(4):15–20.

You also may be interested in...

MSMR Vol. 29 No. 08 - August 2022

Report
8/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Musculoskeletal Injuries During U.S. Air Force Special Warfare Training Assessment and Selection, Fiscal Years 2019–2021.

Article
8/1/2022
01_Musculoskeletal Injuries

Musculoskeletal (MSK) injuries are costly and the leading cause of medical visits and disability in the U.S. military.1,2 Within training envi­ronments, MSK injuries may lead to a loss of training, deferment to a future class, or voluntary disenrollment from a training pipeline, all of which are impediments to maintaining full levels of manpower and resources for the Department of Defense.

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

Article
8/1/2022
03_Pain and PTSD

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including physical, psychologi­cal, and neurological issues.

Prevalence and Distribution of Refractive Errors Among Members of the U.S. Armed Forces and the U.S. Coast Guard, 2019.

Article
8/1/2022
02_Refractive Errors

During calendar year 2019, the estimated prevalence of myopia, hyperopia, and astigmatism were 17.5%, 2.1%, and 11.2% in the active component of the U.S. Armed Forces and 10.1%, 1.2%, and 6.1% of the U.S. Coast Guard, respectively.

MSMR Vol. 29 No. 07 - July 2022

Report
7/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Surveillance Trends for SARS-CoV-2 and Other Respiratory Pathogens Among U.S. Military Health System Beneficiaries, 27 September 2020–2 October 2021.

Article
7/1/2022
1_COVID-19 testing beneficiaries

Respiratory pathogens, such as influenza and adenovirus, have been the main focus of the Department of Defense Global Respiratory Pathogen Surveillance Program (DoDGRPSP) since 1976.1. However, DoDGRPSP also began focusing on SARS-CoV-2 when COVID-19 was declared a pandemic illness in early March 2020.2. Following this declaration, the DOD quickly adapted and organized its respiratory surveillance program, housed at the U.S. Air Force School of Aerospace Medicine (USAFSAM), in response to this emergent virus.

Suicide Behavior Among Heterosexual, Lesbian/Gay, and Bisexual Active Component Service Members in the U.S. Armed Forces.

Article
7/1/2022
3_Access to care_suicide 2021

Lesbian, gay, and bisexual (LGB) individuals are at a particularly high risk for suicidal behavior in the general population of the United States. This study aims to determine if there are differences in the frequency of lifetime suicide ideation and suicide attempts between heterosexual, lesbian/gay, and bisexual service members in the active component of the U.S. Armed Forces. Self-reported data from the 2015 Department of Defense Health-Related Behaviors Survey were used in the analysis.

Establishment of SARS-CoV-2 Genomic Surveillance Within the Military Health System During 1 March–31 December 2020.

Article
7/1/2022
2_COVID19 genomics_725

This report describes SARS-CoV-2 genomic surveillance conducted by the Department of Defense (DOD) Global Emerging Infections Surveillance Branch and the Next-Generation Sequencing and Bioinformatics Consortium (NGSBC) in response to the COVID-19 pandemic. Samples and sequence data were from SARS-CoV-2 infections occurring among Military Health System (MHS) beneficiaries from 1 March to 31 December 2020.

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance.

Article
7/1/2022
4_lung cancer screening

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of time not on active duty.

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

Article
6/1/2022
5_deployed morbidity

As in previous years, among service members deployed during 2021, injury/poisoning, musculoskeletal diseases and signs/symptoms accounted for more than half of the total health care burden during deployment. Compared to garrison disease burden, deployed service members had relatively higher proportions of encounters for respiratory infections, skin diseases, and infectious and parasitic diseases. The recent marked increase in the percentage of total medical encounters attributable to the ICD diagnostic category "other" (23.0% in 2017 to 44.4% in 2021) is likely due to increases in diagnostic testing and immunization associated with the response to the COVID-19 pandemic.

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

Article
6/1/2022
6_beneficiary morbidity

In 2021, mental health disorders accounted for the largest proportions of the morbidity and health care burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 and those aged 65 or older, musculoskeletal diseases accounted for the most morbidity and health care burdens. As in previous years, this report documents a substantial majority of non-service member beneficiaries received care for current illness and injury from the Military Health System as outsourced services at non-military medical facilities.

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Article
6/1/2022
reserve snapshot

Hospitalizations, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
2_hospitalizations

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental health disorders, pregnancy-related conditions, injury/poisoning, and digestive system disorders.

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
1_active component morbidity

In 2021, as in prior years, the medical conditions associated with the most medical encounters, the largest number of affected service members, and the greatest number of hospital days were in the major categories of injuries, musculoskeletal disorders, and mental health disorders. Despite the pandemic, COVID-19 accounted for less than 2% of total medical encounters and bed days in active component service members.

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

Article
6/1/2022
4_Medevacs

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were most common, followed by disorders of the digestive system and mental health disorders.

Page 3 of 15 , showing items 31 - 45
First < 1 2 3 4 5  ... > Last 
Refine your search
Last Updated: October 20, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery