Skip main navigation

Military Health System

Clear Your Browser Cache

This website has recently undergone changes. Users finding unexpected concerns may care to clear their browser's cache to ensure a seamless experience.

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Image of This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Stephanie Rossow). This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit: CDC/Stephanie Rossow).

Acute gastroenteritis is associated with sudden onset of disturbances in gastrointestinal function such as nausea, vomiting, diarrhea (sometimes bloody), abdominal cramps, and fever. The illness typically lasts less than 2 weeks and is most commonly associated with an infectious etiology. Treatment with antibiotics and anti-motility agents may be indicated depending upon the causative infectious agent and the severity of symptoms. Acute gastroenteritis is very common and is estimated to cause 179 million cases, over 470,000 hospitalizations, and over 5,000 deaths among U.S. residents each year.1 People usually acquire the infectious agents (bacteria, viruses, or protozoa) via the ingestion of contaminated food or water or direct person-to-person contact. Although developed nations have reduced the risks of exposure to gastrointestinal pathogens by building infrastructures of sanitary systems for water distribution and sewage disposal, transmission via contaminated food and water remains common.

In military populations, the threat of gastroenteritis is enhanced when personnel are serving in field settings as part of training, deployment, or in theaters of combat. The efforts of military preventive medicine and environmental health assets focus on minimizing the risks of food-borne and waterborne disease not only in the peacetime settings of congregate housing and field training but also in the austere settings of combat. Although such preventive measures are effective, they do not prevent all gastrointestinal illness.

Immunizations provide a powerful class of defense against infectious diseases. Although vaccines protecting against at least 30 different infectious diseases have been approved by the U.S. Food and Drug Administration (FDA) on the basis of evidence of safety and effectiveness, only 2 of those vaccines (cholera, rotavirus) offer the prospect of an immunological defense against a specific cause of gastroenteritis.2

The FDA-approved cholera vaccine is a live, orally administered vaccine that offers protection against the Vibrio cholerae O1 strain, a bacterium capable of causing gastroenteritis at the more severe end of the spectrum (i.e., cholera).3 Cholera vaccine is not a routinely administered vaccine, and no country or territory currently requires vaccination against cholera as a condition of entry for visitors. The Advisory Committee for Immunization Practices and the Centers for Disease Control and Prevention recommend cholera vaccine for individuals 18–64 years of age who reside in an area with endemic cholera or who will travel to an area that is experiencing a cholera outbreak or that has a high risk of cholera because of a humanitarian crisis.3 There are also 3 other oral vaccines for cholera that are not approved for use in the U.S. These vaccines are killed vaccines and they require 2 doses at least a week apart for full protection.3

Rotavirus-caused gastroenteritis affects nearly all children by the time they reach the age of 5 in both developed and underdeveloped regions around the world.4 The live, oral vaccine must be given in 2 or 3 doses, depending upon the brand of vaccine used. The first dose should be administered before 14 weeks and 6 days of age and the last dose by 8 months and 0 days of age. The vaccine is not indicated for adults.5

The better-recognized bacterial species associated with gastroenteritis are members of the genera Escherichia, Salmonella, Shigella, Campylobacter, Clostridium, Staphylococcus, Bacillus, Yersinia, and Vibrio. Except for V. cholerae, there are no vaccines for any of these bacteria. Protozoan causes of gastroenteritis are less commonly identified than the bacterial and viral causes, but there are no vaccines for the more common protozoans (i.e., Giardia, Cryptosporidium, and Cyclospora). There are numerous viral causes of gastroenteritis, but the best known are the caliciviruses (including noroviruses), astroviruses, and rotaviruses. Except for the rotavirus vaccine, there are no FDA-approved vaccines to protect against the viral causes of acute gastroenteritis. It has been estimated that noroviruses are the cause of about one-third of all cases of gastroenteritis in the U.S., so an efficacious norovirus vaccine has been the subject of much research to date.6 The quest for a norovirus vaccine or vaccines has proven especially challenging because of the relatively short period of immunity following a clinically significant infection, the heterogeneity of strains of norovirus, and the inability to culture the virus in the laboratory.6 Despite these challenges, several norovirus vaccine candidates are currently being evaluated in human clinical trials, including a study of a bivalent vaccine in military recruits.7

The incidence rates of most types of acute infectious gastroenteritis are not susceptible to reduction by vaccines. The prevention of gastroenteritis (and other diseases) spread through fecal contamination of water, food, or fomites depends upon diligent implementation of the wide spectrum of measures that constitute sanitation, hygiene, environmental health, food safety, and disease surveillance. Responsibilities in these areas fall to government agencies, suppliers of food and water, educators, public health authorities, healthcare providers, parents, and individuals.

A current review of required immunizations for Department of Defense personnel by Combatant Command is available at https://health.mil/Military-Health-Topics/Health-Readiness/Immunization-Healthcare/Vaccine-Recommendations/Vaccine-Recommendations-by-AOR.

Author affiliations: GDIT contracted to the Armed Forces Health Surveillance Branch, Defense Health Agency, Silver Spring, MD (Dr. O'Donnell); Immunization Healthcare Branch, Public Health Division, Defense Health Agency, Falls Church, VA (Col Rans).

References

  1. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis. 2011;17(1):16–22.
  2. U.S. Food and Drug Administration. Vaccines licensed for use in the United States. https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states. Accessed 21 Feb. 2020.
  3. Centers for Disease Control and Prevention. Cholera–Vibrio cholerae infection. Vaccines. https://www.cdc.gov/cholera/vaccines.html. Accessed 21 Feb. 2020.
  4. Dormitzer PR. Rotaviruses. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. 8th ed. Philadelphia, PA: Elsevier Saunders; 2015:1854–1864.
  5. Centers for Disease Control and Prevention. Rotavirus vaccination: information for health care professionals. https://www.cdc.gov/vaccines/vpd/rotavirus/hcp/index.html. Accessed 3 Jan. 2020.
  6. O’Ryan M, Vidal R, del Canto F, Salazar JC, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae. Hum Vaccin Immunother. 2015;11(3):584–600.
  7. Mattison CP, Cardemil CV, Hall AJ. Progress on norovirus vaccine research: public health considerations and future directions. Expert Rev Vaccines. 2018;17(9):773–784.

You also may be interested in...

Article
Aug 1, 2022

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

U.S. Air Force Airman 1st Class Miranda Lugo, right, 18th Operational Medical Readiness Squadron mental health technician and Guardian Wingman trainer, and Maj. Joanna Ho, left, 18th OMRS director of psychological health, discuss the suicide prevention training program, Guardian Wingman, at Kadena Air Base, Japan, Aug. 20, 2021. Guardian Wingman aims to promote wingman culture and early help-seeking behavior. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including ...

Article
Jul 1, 2022

Surveillance Trends for SARS-CoV-2 and Other Respiratory Pathogens Among U.S. Military Health System Beneficiaries, 27 September 2020–2 October 2021.

Staff Sgt. Misty Poitra and Senior Airman Chris Cornette, 119th Medical Group, collect throat swabs during voluntary COVID-19 rapid drive-thru testing for members of the community while North Dakota Army National Guard Soldiers gather test-subject data in the parking lot of the FargoDome in Fargo, N.D., May 3, 2020. The guardsmen partnered with the N.D. Department of Health and other civilian agencies in the mass-testing efforts of community volunteers. (U.S. Air National Guard photo by Chief Master Sgt. David H. Lipp)

Respiratory pathogens, such as influenza and adenovirus, have been the main focus of the Department of Defense Global Respiratory Pathogen Surveillance Program (DoDGRPSP) since 1976.1. However, DoDGRPSP also began focusing on SARS-CoV-2 when COVID-19 was declared a pandemic illness in early March 2020.2. Following this declaration, the DOD quickly ...

Article
Jul 1, 2022

Establishment of SARS-CoV-2 Genomic Surveillance Within the Military Health System During 1 March–31 December 2020.

Dr. Peter Larson loads an Oxford Nanopore MinION sequencer in support of COVID-19 sequencing assay development at the U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland. (Photo by John Braun Jr., USAMRIID.)

This report describes SARS-CoV-2 genomic surveillance conducted by the Department of Defense (DOD) Global Emerging Infections Surveillance Branch and the Next-Generation Sequencing and Bioinformatics Consortium (NGSBC) in response to the COVID-19 pandemic. Samples and sequence data were from SARS-CoV-2 infections occurring among Military Health System ...

Article
Jul 1, 2022

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance.

A patient at Naval Hospital Pensacola prepares to have a low-dose computed tomography test done to screen for lung cancer. Lung cancer is the leading cause of cancer-related deaths among men and women. Early detection can lower the risk of dying from this disease. (U.S. Navy photo by Jason Bortz)

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of ...

Article
Jul 1, 2022

Suicide Behavior Among Heterosexual, Lesbian/Gay, and Bisexual Active Component Service Members in the U.S. Armed Forces.

  The DOD’s theme for National Suicide Prevention Month is “Connect to Protect: Support is Within Reach.” Deployments, COVID-19 restrictions, and the upcoming winter season are all stressors and potential causes for depression that could lead to suicidal ideations. Options are available to individuals who are having thoughts of suicide and those around them (Photo by Kirk Frady, Regional Health Command Europe).

Lesbian, gay, and bisexual (LGB) individuals are at a particularly high risk for suicidal behavior in the general population of the United States. This study aims to determine if there are differences in the frequency of lifetime suicide ideation and suicide attempts between heterosexual, lesbian/gay, and bisexual service members in the active ...

Article
Jun 1, 2022

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

As in previous years, among service members deployed during 2021, injury/poisoning, musculoskeletal diseases and signs/symptoms accounted for more than half of the total health care burden during deployment. Compared to garrison disease burden, deployed service members had relatively higher proportions of encounters for respiratory infections, skin ...

Article
Jun 1, 2022

Hospitalizations, Active Component, U.S. Armed Forces, 2021

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental ...

Article
Jun 1, 2022

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

In 2021, mental health disorders accounted for the largest proportions of the morbidity and health care burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 and those aged 65 or older, musculoskeletal diseases accounted for the most morbidity and health care burdens. As in previous years, this report ...

Article
Jun 1, 2022

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

In 2021, as in prior years, the medical conditions associated with the most medical encounters, the largest number of affected service members, and the greatest number of hospital days were in the major categories of injuries, musculoskeletal disorders, and mental health disorders. Despite the pandemic, COVID-19 accounted for less than 2% of total ...

Article
Jun 1, 2022

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were ...

Article
Jun 1, 2022

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared ...

Skip subpage navigation
Refine your search
Last Updated: October 19, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on X Follow us on YouTube Sign up on GovDelivery