Back to Top Skip to main content Skip to sub-navigation

SARS-CoV-2 and Influenza Coinfection in a Deployed Military Setting—Two Case Reports

4-2871: This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. A novel coronavirus, named Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019. The illness caused by this virus has been named coronavirus disease 2019 (COVID-19). (Credit: Alissa Eckert, MSMI; Dan Higgins, MAMS) This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. A novel coronavirus, named Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019. The illness caused by this virus has been named coronavirus disease 2019 (COVID-19). (Credit: Alissa Eckert, MSMI; Dan Higgins, MAMS)

Recommended Content:

Medical Surveillance Monthly Report

BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is responsible for a global pandemic with over 46 million cases worldwide, including over 9 million in the U.S. and 83,000 in the DoD as of 2 November 2020.1,2 COVID-19 presents as a broad spectrum of disease progression and manifestations ranging from asymptomatic carriage/colonization to acute respiratory distress syndrome leading to severe complications or death. Risk factors for severe disease include several comorbidities: older age (≥65 years), hypertension (HTN), cardiovascular disease, smoking, chronic respiratory disease, cancer, diabetes (DM), obesity (BMI ≥ 30 kg/m2), and male sex.3–6 Additionally, some workplace exposures pose significant risks of infection among workers based on close contacts with high risk populations (e.g., COVID-19 patients, factory workers).Deployment may place service members at higher risk for respiratory infections; for example, a high-profile COVID-19 outbreak on the USS Theodore Roosevelt during deployment was recently described.8

In contrast to COVID-19, the military faces seasonal influenza every year. Risk factors of seasonal influenza overlap with those associated with COVID-19 (e.g., immune suppressed, older age, comorbidities), as do clinical presentations (fever, cough, headaches, and malaise).9 Fortunately, influenza-associated deaths among the U.S. military have been relatively few. This is most likely because of the good preexisting health status of the US military, prompt detection of influenza with rapid influenza diagnostic tests (RIDTs), several effective antiviral therapeutics for early treatment and chemoprophylaxis, and a robust, compulsory vaccination program. The seasonal influenza vaccine has been shown to reduce the risk for influenza illness and associated morbidity and mortality worldwide.10

Coinfection with both SARS-CoV-2 and influenza was reported early in the pandemic, when 46 (49%) of a case series of 93 critically ill COVID-19 cases from Wuhan, China were found to be coinfected with influenza virus.11 Several case reports and case series documenting similar coinfections have been published since then.12–15 Although one meta-analysis estimated that only 3% of COVID-19 cases are coinfected with another virus,16 the impact of coinfections is uncertain due to substantial heterogeneity between populations and environments. This report describes a case series of the first 2 coinfections of COVID-19 and seasonal influenza in the deployed setting, specifically at a U.S. Army Role I Military Treatment Facility (MTF) within the U.S. Central Command (CENTCOM) area of responsibility (AOR). The threats, challenges, and mitigation strategies for these coinfections in the deployed setting are also described.

CASE 1

On 8 October 2020, a 56 year old white male contractor, presented to a Role I clinic with symptoms of anorexia, fever, chills, and headache which began 3 days prior. His initial vital signs were unremarkable (blood pressure [BP]: 112/72; pulse [P]: 96; respiratory rate [RR]: 18; peripheral capillary oxygen saturation [SpO2]: 97% RA; temperature [T]: 97o F). He did not display respiratory distress. The QuickVue® rapid point-of-care antigen test was positive for influenza type A; a COVID-19 test was performed but results were not immediately available. He had not received the 2020–2021 seasonal influenza vaccine. He was immediately placed on isolation and antiviral treatment with osteltamivir was initiated. His past medical history was significant for hypertension and obstructive sleep apnea (no continuous positive airway pressure was required). His routine medications included amlodipine, hydrochlorothiazide, and losartan. He did not report any allergies to medications. His physical exam was unremarkable. Subsequently, he tested positive for COVID-19 by nasopharyngeal swab from the Biofire® (reverse transcription polymerase chain reaction [RT-PCR]). On day 6 of the illness, he developed a non-productive cough and myalgias. He completed his course of osteltamivir without issues. On day 9 of illness, the patient complained of “body stiffness” and was prescribed ibuprofen as needed. The remaining course of infection was unremarkable and afebrile. There were no anti-pyretics prescribed for the 24 hours prior to release from isolation and the symptoms were improving. No further testing or diagnostics were required. His condition did not warrant hospitalization. Three close contacts were identified. One contact had symptoms compatible with COVID-19 and was tested; this test came back positive, so the contact was also considered a confirmed case and was isolated for 10 days. At this point, further contact tracing was performed. The 2 other contacts remained asymptomatic during their 14-day quarantine. Ten days after symptom onset, Case 1 returned to duty as per Centers for Disease Control and Prevention (CDC) recommendations.17

CASE 2

On 9 October 2020, a 34 year old white male Army officer was initially identified as a close contact of a confirmed COVID-19 case and placed in quarantine. He was asymptomatic but tested positive for COVID-19 by the Biofire® RT-PCR. He was placed in isolation with precautions. He did not report any significant past medical history, comorbidities, or medications. His initial vital signs revealed an elevated blood pressure but were otherwise unremarkable (BP: 143/76; P: 83; RR: 16; SpO2: 97%; T:97o F). He continued to be asymptomatic until 2 days later when he complained of myalgias. He did not display any respiratory distress or other symptoms. Since myalgias are a classic symptom of seasonal influenza, the provider ordered a QuickVue® rapid influenza antigen test, which was positive for influenza type B, so the provider started him on the antiviral osteltamivir. He had not received the 2020–2021 seasonal influenza vaccine. His vital signs were stable throughout the illness and the initial elevated blood pressure normalized. His physical exam was unremarkable. On the next day (day 4 from the inititation of quarantine), he complained of new onset nausea and vomiting after taking the osteltamivir. As nausea and vomiting are common side effects of osteltamivir, the provider adjusted the timing of the medicine and prescribed ondansetron as needed for nausea. On day 7, his blood pressure increased to 144/62 and the patient complained of ageusia and anosmia (loss of taste and smell, respectively). On day 8, symptoms also included slight fatigue, but he had no respiratory distress and his vital signs were normal. He completed the course of Tamiflu®. On day 9, he complained of a cough and shortness of breath plus diarrhea, but his vital signs remained normal (BP: 112/80; P: 68; RR: 18; SpO2 98%; T: 96o F) and his physical exam was unremarkable. His symptoms improved through supportive care.

Throughout the remaining course of illness, the patient remained afebrile and improved with no anti-pyretics 24 hours prior to release from isolation. There were no indications for further testing or diagnostics. His course of illness did not warrant hospital admission. Six close contacts were identified; all 6 remained asymptomatic during the 14-day quarantine. Ten days after symptom onset, Case 2 was returned to duty.

EDITORIAL COMMENT

This report describes the first 2 confirmed cases of COVID-19 and influenza coinfection among U.S. personnel deployed within the CENTCOM AOR. Because seasonal influenza and COVID-19 both present with a wide variety of clinical manifestations and overlapping symptoms, providers should consider the possibility of infection with influenza, COVID-19, or coinfection among patients with respiratory illnesses. While both influenza and COVID-19 may result in severe complications and death, patients with influenza and COVID-19 coinfection have been found to have more than 2 times the odds of death compared to those affected by COVID-19 alone.18 Although standards of fitness required for deployment typically result in a generally healthy deployed population,19 there are some civilian and contractor personnel who may deploy with chronic medical conditions. Additionally, there may be environmental and occupational factors which place personnel at increased risk of infection and transmission during deployment. Some examples of this elevated risk are seen in the current case reports, including the civilian contractor who was at higher risk for occupational exposure as a linguist based on daily interaction with host nation partners, in addition to the congregate living and work settings which exist during deployments.

A Role I medical facility has limited laboratory capability in the deployed environment. The current case reports demonstrate the importance of maintaining an index of suspicion and of early testing for the multiple possible etiologic agents in order to both provide the most appropriate care and to implement effective measures to interrupt disease transmission. Rapid, point-of-care diagnostic test capabilities which include both influenza and COVID-19 can help guide antiviral treatment, implementation of effective prevention and control measures, and other clinical decisions such as antibiotic use and additional diagnostic testing. These tests should preferably be collected within 4 days of symptom onset using nasopharyngeal specimens. Rapid influenza molecular assays are recommended over antigen detection tests,20 and several multiplex nucleic acid detection assays have received Emergency Use Authorization to detect both SARS-CoV-2 and influenza types A and B viruses.21 However, false negative COVID-19 tests may also occur, particularly among those who are coinfected with influenza.13 The local epidemiology of SARS-CoV-2 and influenza viruses should influence clinical and public health decisions. When both viruses are circulating widely, providers may consider presumptive treatment, even in the context of a negative influenza test, based on mission requirements and the clinical situation. Public health may recommend quarantine for close contacts of confirmed influenza cases even if SARSCoV-2 tests are pending or negative. To enhance active case finding efforts, all close contacts of confirmed or probable cases of COVID-19 should be tested.22

The best way to prevent influenza is through annual vaccination. The fact that neither of the 2 cases had received the 2020–2021 vaccine underscores the importance of this intervention. In outpatients with uncomplicated influenza, antiviral treatment has been shown to significantly reduce illness duration, lower respiratory tract complications requiring antibiotics, and hospitalizations for any cause.23,24 Health care personnel should ensure that antiviral treatment is available and prioritized for those who are at high risk for influenza complications. Antiviral chemoprophylaxis of influenza is generally not recommended for widespread or routine use except for control of institutional influenza outbreaks, in hospitalized patients, or among outpatients with complications or progressive disease.20 Clinicians should also ensure that other treatment issues are considered for coinfected patients, such as the higher mortality seen among patients with influenza pneumonia after corticosteroid treatment.25

While this report includes only 2 cases, and further research on influenza and COVID-19 co-infection is certainly warranted, it nevertheless supports the importance of implementing force health protection (FHP) measures to prevent, detect, and respond to the spread of both of these health threats. This is particularly important in the current context of a drawdown in forces in many deployed locations, as further losses of personnel to illness may degrade Commanders’ execution of critical missions. This requires command emphasis and support of FHP measures including: vaccination, physical distancing, use of face coverings, hygiene and sanitation, contact tracing, isolation and quarantine, medical therapeutics, rapid diagnostic testing, and host nation partnerships. These case reports also highlight the importance of identifying symptomatic persons quickly enough to test, trace, and treat for both COVID-19 and influenza. Understanding the risks and epidemiologic trends of infectious diseases will enhance Commanders’ ability to mitigate the risk of these diseases in deployed forces.

Author affiliations: COL Paul O. Kwon, U.S. AMEDDAC, Fort Jackson, SC; MAJ Nathan A. Fisher, U.S. CENTCOM, Camp Arifjan, Kuwait; COL James D. Mancuso, Uniformed Services University of the Health Sciences, Bethesda, MD.

Disclaimer: The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University, the U.S. Army, or the U.S. Department of Defense.

REFERENCES

1. Johns Hopkins University & Medicine. Coronavirus resource center. https://coronavirus.jhu.edu/. Updated 2 November 2020. Accessed 2 November 2020.

2. US Department of Defense. Coronavirus: DOD Response (DOD COVID-19 Cumulative Totals). https://www.defense.gov/explore/spotlight/coronavirus/. Updated 30 October 2020. Accessed 2 November 2020.

3. Webb Hooper M, Napoles AM, Perez-Stable EJ. COVID-19 and racial/ethnic disparities. JAMA. 2020;323(24):2466-2467.

4. Ioannou GN, Locke E, Green P, et al. Risk factors for hospitalization, mechanical ventilation, or death among 10131 US veterans with SARS-CoV-2 infection. JAMA Netw Open. 2020;3(9):e2022310.

5. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020. 

6. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. NEngl J Med. 2020;382(18):1708–1720.

7. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection. PLoS One. 2020;15(4):e0232452.

8. Kasper MR, Geibe JR, Sears CL, et al. An outbreak of COVID-19 on an aircraft carrier. N Engl J Med. 2020.

9. Sanchez JL, Cooper MJ. Influenza in the US military: An overview. J Infectious Diseases & Treatment. 2016;2(1):1–5.

10. Epperson S, Davis CT, Brammer L, et al. Update: Influenza activity—United States and worldwide, May 19–September 28, 2019, and composition of the 2020 southern hemisphere influenza vaccine. MMWR Morb Mortal Wkly Rep. 2019;68(40):880–884.

11. Ma S, Lai X, Chen Z, Tu S, Qin K. Clinical characteristics of critically ill patients co-infected with SARS-CoV-2 and the influenza virus in Wuhan, China. Int J Infect Dis. 2020;96:683–687.

12. Singh B, Kaur P, Reid RJ, Shamoon F, Bikkina M. COVID-19 and Influenza Co-Infection: Report of Three Cases. Cureus. 2020;12(8):e9852.

13. Wu X, Cai Y, Huang X, et al. Co-infection with SARS-CoV-2 and Influenza A Virus in Patient with Pneumonia, China. Emerg Infect Dis. 2020;26(6):1324–1326.

14. Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol. 2020.

15. Azekawa S, Namkoong H, Mitamura K, Kawaoka Y, Saito F. Co-infection with SARS-CoV-2 and influenza A virus. IDCases. 2020;20:e00775.

16. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect.2020;81(2):266–275.

17. Centers for Disease Control and Prevention (CDC). Duration of Isolation and Precautions for Adults with COVID-19. Department of Health and Human Services. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html.Updated 19 October 2020. Accessed 18 December 2020.

18. Stowe J, Tessier E, Zhao H, et al. Interactions between SARS-CoV-2 and Influenza and the impact of coinfection on disease severity: A test negative design. medRxiv. https://www.medrxiv.org/content/10.1101/2020.09.18.20189647v2. Updated 22September 2020. Accessed 3 November 2020.

19. U.S. Central Command. MOD FIFTEEN TO USCENTCOM INDIVIDUAL PROTECTION AND INDIVIDUAL-UNIT DEPLOYMENT POLICY. https://media.defense.gov/2020/Aug/29/2002487210/-1/-1/0/USCENTCOM%20MOD%2015.PDF. Updated 9 April 2020. Accessed 3 November 2020.

20. Uyeki T, Bernstein H, Bradley J, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenza. Clin Inf Dis. 2019;68(6):e1-e47.

21. Centers for Disease Control and Prevention: National Center for Immunization and Respiratory Diseases (NCIRD). Table 4. Multiplex Assays Authorized for Simultaneous Detection of Influenza Viruses and SARS-CoV-2 by FDA. https://www.cdc.gov/flu/professionals/diagnosis/table-flu-covid19-detection.html. Updated 20 October 2020. Accessed 3 November 2020.

22. Centers for Disease Control and Prevention (CDC). Contact Tracing for COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/php/contacttracing/contact-tracing-plan/contact-tracing.html. Updated 16 December 2020. Accessed 19 December 2020.

23. Dobson J, Whitley RJ, Pocock S, Monto AS. Oseltamivir treatment for influenza in adults: a meta-analysis of randomized controlled trials. Lancet. 2015;385(9979):1729–1737.

24. Malosh RE, Martin ET, Ortiz JR, Monto AS. The risk of lower respiratory tract infection following influenza virus infection: A systematic and narrative review. Vaccine. 2018;36(1):141–147.

25. Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23(1):99.

You also may be interested in...

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Division | Health Readiness | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report | Summer Safety

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Medical Surveillance Monthly Report | Epidemiology and Analysis
<< < ... 11 12 13 14 > >> 
Showing results 196 - 205 Page 14 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.