Skip to main content

Military Health System

Historical Perspective: The Evolution of Post-exposure Prophylaxis for Vivax Malaria Since the Korean War

Image of An Aedes aegypti mosquito. An Aedes aegypti mosquito can transmit the viruses that cause dengue fever.
CDC/Prof. Frank Hadley Collins, Cntr. for Global Health and Infectious Diseases, Univ. of Notre Dame

Recommended Content:

Medical Surveillance Monthly Report

Malaria during the Korean War

During the Korean War (1950–1953) malaria was a major infectious disease threat to infantry forces operating in Korea during the summer transmission season. Plasmodium vivax with a long latency period ad evolved such that many soldiers were exposed to infectious mosquitoes during their service in Korea during the summer but only became aware of their infection during the next year when latent hepatic parasites (hypnozoites) reactivated to cause symptomatic relapses. Chloroquine prophylaxis taken by soldiers during their time in the malarious region adequately suppressed any parasites in the blood minimizing the impact of malaria while in the combat zone (Figure 1) but did not kill hypnozoites. The result was many relapse cases long after exposure to the mosquito vectors.1 Due to 1-year tours of duty, most soldiers who contracted malaria during the Korean War were not actually symptomatic while in Korea. Thousands of cases of vivax malaria, mostly in soldiers, appeared in the U.S. beginning mid-year in 1951 (Figure 2), endangering the recently acquired national malaria elimination status. Clearly, better anti-malarial medication was required.

An 8-aminoquinoline, pamaquine, was the original synthetic antimalarial drug but it was judged by the U.S. Army to be too toxic for use because of its association with hemolysis in African American soldiers, many of whom were glucose-6-phosphate dehydrogenase (G6PD) deficient.2 A series of pamaquine analogues were tested by a reactivated antimalarial drug development program which had been initiated during World War II. Using prison volunteers purposely infected with rapidly relapsing vivax malaria strains from the Southwest Pacific, clinical investigators in Illinois rapidly identified a better tolerated 8-aminoquinoline known as primaquine.3,4 Once primaquine had been proven to kill hypnozoites in the liver, it was moved to field trials on troopships of returning Korean War veterans. By 1952, all troop transports had dedicated teams of medics whose function was to see that a 2-week course of primaquine (15 mg daily) was administered to every returning veteran. Within 2 years of implementing this strategy for post-exposure malaria prophylaxis, late vivax relapses in the U.S. had largely ceased due to the administration of primaquine to hundreds of thousands of soldiers.5 Chloroquine and primaquine remained the main antimalarial prophylaxis drugs even into the Vietnam conflict (1965–1972).

Tafenoquine

The emergence of drug-resistant malaria strains during the Vietnam conflict reinvigorated the drug development efforts by the U.S. Department of Defense (DOD) to combat this growing threat. During this effort, scientists from the Walter Reed Army Institute of Research, Division of Experimental Therapeutics (WRAIR/ET), screened thousands of potential new anti-relapse drug candidates to improve on the current standard of care, primaquine.6 During this testing one compound, called WR238605, or tafenoquine, demonstrated desirable properties that appeared superior to those of other pre-clinical candidates and primaquine, and became a lead candidate. Field trials for tafenoquine began in 1998.

After completing extensive pre-clinical and early clinical work, WRAIR/ET transitioned tafenoquine to the U.S. Army Medical Materiel Development Activity (USAMMDA). USAMMDA continued development of tafenoquine in collaboration with WRAIR/ET, its overseas laboratories, and through commercial partnerships, ultimately establishing a cooperative research and development agreement with 60 Degrees Pharmaceutical, LLC (60 Degrees). The partnership culminated in the U.S. Food and Drug Administration (FDA) approval of tafenoquine, (trade name Arakoda) in 2018 as an antimalarial indicated for the prophylaxis of malaria for continuous dosing up to six months in patients aged 18 years and older.7 Also in 2018, the FDA approved the use of tafenoquine (trade name Krintafel) for anti-relapse therapy of P. vivax in patients aged 16 years and older.8

Over the last decade, the DOD has seen relativity few cases of malaria, typically between 30 to 60 cases annually.9 Although cases of Plasmodium falciparum malaria acquired in Africa have become more common than cases caused by other species, the numbers of cases associated with service in South Korea and Afghanistan (almost exclusively P. vivax) have accounted for about 25% of the recent annual totals. The low case numbers are likely attributable to the reduced presence of U.S. Armed Forces in Afghanistan and Iraq in recent years, force health protection (FHP) measures to counter the threat from the mosquito vectors, such as permethrin treated uniforms and bed nets, and command discipline to ensure service members take their chemoprophylaxis and wear uniforms properly. Tafenoquine will likely have a significant role in reducing the number of malaria cases further by increasing compliance, where weekly dosing could be preferred over daily dosing.10

The promise of tafenoquine is based upon several characteristics. First, tafenoquine is effective against all species and life cycle stages of the malaria parasites that infect humans; at this time, there is no known tafenoquine resistance among the 5 Plasmodium species that affect humans. Second, the drug is FDA-approved for up to 6 months of malaria prophylaxis while living or traveling in a malaria region. Third, the effective half-life of the drug in humans is at least 2 weeks. As a result, the frequency of maintenance doses is just weekly. This dosing schedule enhances the likelihood of good compliance, particularly in settings where supervised or observed dosing is desirable, such as in military units. The drug's long half-life provides sufficiently high drug levels to allow for what is called "compliance forgiveness". If a service member misses a weekly dose, there is enough drug remaining in the body to provide protective efficacy until the following scheduled dose. Although it is not recommended to miss a weekly dose, the label instructions specify that, when a weekly dose is omitted, the individual should not take a make-up dose but should simply resume the prophylaxis at the time of the next scheduled dose. Results of clinical trials have suggested that monthly dosing could be a possibility in the future.7,11 Fourth, not only is tafenoquine effective for anti-relapse therapy (post-exposure prophylaxis) against the hypnozoites of P. vivax and Plasmodium ovale, but such therapy requires just a single dose of tafenoquine. This single dose requirement contrasts with the conventional dose schedule of primaquine which must be taken daily for 14 days, a well-known impediment to high levels of patient compliance.12 Moreover, if the weekly prophylaxis while in the malarious area consisted of tafenoquine, no additional anti-relapse therapy would be required.

In December 2019, the Defense Health Agency (DHA) published an update to Deployment Health Procedures, procedural instruction (PI) 6490.03 approving tafenoquine as a second-line malaria prophylaxis countermeasure for FHP.13 This update is the first step in the introduction of tafenoquine to the warfighter. Combatant Commands, such as U.S. Africa Command (AFRICOM) and U.S. Indo-Pacific Command (INDOPACOM) have applied the DHA PI updates and incorporated tafenoquine as a new malaria prophylaxis option in their internal policies. As the drug is administered in the broader military and civilian population and 60 Degrees completes the FDA post-marketing commitments, more information on, and familiarization with, the properties of the drug will be realized and it is expected that DOD's guidance will evolve to integrate the new information.

As noted in PI 6490.03, there are additional factors to consider when contemplating the use of tafenoquine.13 First, tafenoquine (as well as primaquine) should not be prescribed for persons who have G6PD deficiency because of the risk of drug induced hemolytic anemia. Current DOD policy provides for the routine screening of all service members for G6PD deficiency and for documentation of the results in the service members' individual health records. Second, current FDA approval of tafenoquine for chemoprophylaxis specifies a duration of use of no more than 6 months; however, there are ongoing post-marketing studies to extend the duration of use to 12 months.14

Editorial Comments

Malaria relapses are an adaptation of the parasite to survive between transmission seasons through latency in the liver followed by reactivation months to even a year after infection. Many U.S. Army veterans who served in the Southwest Pacific during the World War II reported greater than 20 separate malaria episodes triggered by relapses from the liver despite taking chemo-suppressive medications. Pamaquine was too toxic for use but its better tolerated cousin primaquine largely solved the problem of post-deployment relapses during the Korean War. Efficacious medications are only part of the equation needed for force health protection. Better tolerated drugs that could be given infrequently enough (e.g., weekly as opposed to daily) so as to facilitate supervised administration of the medication (directly observed therapy) are also desirable.

Despite a very long developmental history, tafenoquine is now available to replace primaquine as a better tolerated medication to treat soldiers infected with relapsing malaria.14 In addition, the very long (2-week) half-life of tafenoquine allows it to be given weekly (200mg in adults) for reliable chemoprophylaxis following a 3-day loading dose regimen consisting of 200 mg per day for a total of 600 mg. It seems likely, based on work in the Royal Thai Army, that tafenoquine monthly regimens may eventually be devised which would further increase compliance and thus effectiveness.11 Anti-relapse therapy consists of a single dose of 300 mg of tafenoquine taken after departure from the area of malaria risk. Further work at WRAIR/ET is being conducted with the aim of finding a regimen or combination that can be safely given to G6PD-deficient individuals, but currently tafenoquine is limited to those known to have adequate G6PD activity by laboratory measurement. Tafenoquine is effective against all malaria species and life cycle stages of the malaria parasite that infect humans, has no known malaria resistance, and provides a convenient dosing regimen, all of which will likely result in vastly improved compliance and effectiveness in the prevention of malaria in U.S. service members. Whether tafenoquine will have a major role in public health efforts to eliminate malaria globally remains to be seen, but tafenoquine is certainly a major advance in FHP against malaria for soldiers deployed to endemic areas.

Author affiliations: U.S. Army Medical Materiel Development Activity (MAJ Zottig); Australian Defence Force Malaria and Infectious Diseases Institute, Enoggera, QLD, Australia (Dr. Shanks).

Acknowledgements: The authors thank all those who worked to bring tafenoquine to registration for malaria chemoprophylaxis and treatment.

Disclaimer: The opinions expressed are those of the authors and do not necessarily reflect those of the Australian Defence Force or the U.S. Department of Defense. Discussion of specific pharmaceutical products does not reflect an endorsement of those products.

Conflict of interest: The authors do not claim any conflict of interest.

Funding: Authors are employees of the U.S. Department of Defense or the Australian Defence Organization. No specific funding was given for this historical study.

References

  1. Marshall IH. Malaria in Korea. In: Recent Advances in Medicine and Surgery Based on Professional Medical Experiences in Japan and Korea 1950–1953. Vol 2. Washington, DC: US Army;1954:270–283. Accessed 13 August 2020. https://history.amedd.army.mil/booksdocs/korea/recad2/recadvol2.html
  2. Hockwald RS, Arnold J, Clayman CB, Alving AS. Toxicity of primaquine in Negroes. J Am Med Assoc. 1952;149(17):1568–1570. 
  3. Alving AS, Arnold J, Robinson DH. Mass therapy of subclinical vivax malaria with primaquine. J Am Med Assoc. 1952;149(17):1558–1562. 
  4. Garrison PL, Hankey DD, Coker WG, et al. Cure of Korean vivax malaria with pamaquine and primaquine. J Am Med Assoc. 1952;149(17):1562–1563.
  5. Archambeault CP. Mass antimalarial therapy in veterans returning from Korea. J Am Med Assoc. 1954;154(17):1411–1415. 
  6. Milhous WK, Schuster BG. Malaria studies aim at drug resistance. US Med. 1990;26:27–28.
  7. U.S. Food & Drug Administration Administration. Drugs@FDA: FDA-Approved Drugs: ARAKODATM. Accessed 16 November 2020. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=210607
  8. U.S. Food & Drug Administration Administration. Drugs@FDA: FDA-Approved Drugs: KRINTAFELTM. Accessed 16 November 2020. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=210795
  9. Armed Forces Health Surveillance Branch. Update:Malaria, U.S. Armed Forces, 2019. MSMR.2020;27(2):2–7. 
  10. Tan KR, Magill AJ, Parise ME, Arguin PM. Doxycycline for malaria chemoprophylaxis and treatment: Report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 2011; 84(4):517–531.
  11.  Walsh DS, Eamsila C, Sasiprapha T, et al. Efficacy of monthly tafenoquine for prophylaxis of Plasmodium vivax and multidrug-resistant P. falciparum malaria. J Infect Dis. 2004;190(8):1456–1463. 
  12. Kotwal RS, Wenzel RB, Sterling RA, et al. An outbreak of malaria in US Army Rangers returning from Afghanistan. JAMA. 2005; 293(2):212–216. Erratum in: JAMA. 2005: 293(6):678.
  13. Defense Health Agency. Procedural Instruction 6490.03. Deployment Health Procedures. 17 December 2019.
  14. Tan KR, Hwang J. Tafenoquine receives regulatory approval in USA for prophylaxis of malaria and radical cure of Plasmodium vivax. J Travel Med. 2018;25(1).
    FIGURE 1. Malaria in U.S. Army personnel in Korea, by month, July 1950–January 1954 

 

FIGURE 2. Malaria morbidity in the U.S, by month, 1951–1953

 

You also may be interested in...

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared to 19% in 2020.

Recommended Content:

Medical Surveillance Monthly Report

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

Article
6/1/2022
Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were most common, followed by disorders of the digestive system and mental health disorders.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021

Article
5/1/2022
iStock—The castor bean tick (Ixoedes ricinus). Credit: Erik Karits

Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that is transmitted by the bite of infected ticks, mostly found in wooded habitats in parts of Europe and Asia

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Article
5/1/2022
SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin)

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

Recommended Content:

Medical Surveillance Monthly Report

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2013–2021

Article
5/1/2022
This illustration depicts a 3D computer-generated image of a number of drug-resistant Neisseria gonorrhoeae bacteria. CDC/James Archer

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2013–2021. In general, compared to their respective counterparts, younger service members, non-Hispanic Black service members, those who were single and other/unknown marital status, and enlisted service members had higher incidence rates of STIs.

Recommended Content:

Medical Surveillance Monthly Report

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Article
5/1/2022
NIANTIC, CT, UNITED STATES 06.16.2022 U.S. Army Staff Sgt. John Young, an information technology specialist assigned to Joint Forces Headquarters, Connecticut Army National Guard, works on a computer at Camp Nett, Niantic, Connecticut, June 16, 2022. Young provided threat intelligence to cyber analysts that were part of his "Blue Team" during Cyber Yankee, a cyber training exercise meant to simulate a real world environment to train mission essential tasks for cyber professionals. (U.S. Army photo by Sgt. Matthew Lucibello)

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report

Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2006–2021

Article
4/1/2022
Marine Corps Cpl. Luis Alicea drinks water after a combat conditioning exercise at Naval Air Station Joint Reserve Base New Orleans, May 20, 2019. Photo By: Marine Corps Lance Cpl. Jose Gonzalez.

Exertional (or exercise-associated) hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 mEq/L) that develops during or up to 24 hours following prolonged physical activity. Acute hyponatremia creates an osmotic imbalance between fluids outside and inside of cells.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2017–2021

Article
4/1/2022
The Embry-Riddle Army ROTC Ranger Challenge team heads out on the 12-mile road march after completing the timed obstacle course event of the 6th Brigade Army ROTC Ranger Challenge January 14, 2022 at Fort Benning, Ga. The Titan Brigade’s Ranger Challenge took place at Fort Benning, Ga. January 13-15, 2022. Photo by Capt. Stephanie Snyder

Exertional rhabdomyolysis is a potentially serious condition that requires a vigilant and aggressive approach. Some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury.

Recommended Content:

Medical Surveillance Monthly Report

Heat Illness, Active Component, U.S. Armed Forces, 2021

Article
4/1/2022
Airmen participate in the 13th Annual Fallen Defender Ruck March at Joint Base San Antonio, Nov. 6, 2020. The event honors 186 fallen security forces, security police and air police members who have made the ultimate sacrifice. Photo By: Sarayuth Pinthong, Air Force.

From 2020 to 2021, the rate of incident heat stroke was relatively stable while the rate of heat exhaustion increased slightly

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Medical Separation from Service Among Incident Cases of Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
3/1/2022
Marines hike to the next training location during Exercise Baccarat in Aveyron, Occitanie, France, Oct.16, 2021. Exercise Baccarat is a three-week joint exercise with Marines and the French Foreign Legion that challenges forces with physical and tactical training. Photo By: Marine Corps Lance Cpl. Jennifer Reyes

Osteoarthritis (OA) is the most common adult joint disease and predominantly involves the weight-bearing joints. This condition, including spondylosis (OA of the spine), results in significant disability and resource utilization and is a leading cause of medical separation from military service.

Recommended Content:

Medical Surveillance Monthly Report

Obesity prevalence among active component service members prior to and during the COVID-19 pandemic, January 2018–July 2021

Article
3/1/2022
Maintaining a healthy weight is important for military members to stay fit to fight. The body mass index is a tool that can be used to determine if an individual is at an appropriate weight for their height. A person’s index is determined by their weight in kilograms divided by the square of height in meters. (U.S. Air Force photo illustration by Airman 1st Class Destinee Sweeney)

This study examined monthly prevalence of obesity and exercise in active component U.S. military members prior to and during the COVID-19 pandemic. These results suggest that the COVID-19 pandemic had a small effect on the trend of obesity in the active component U.S. military and that obesity prevalence continues to increase.

Recommended Content:

Medical Surveillance Monthly Report

Brief report: Using syndromic surveillance to monitor MIS-C associated with COVID-19 in Military Health System beneficiaries

Article
3/1/2022
Air Force 1st Lt. Anthony Albina, a critical care nurse assigned to Joint Base Andrews, Md., checks a patient’s breathing and heart rate during an intubation procedure while supporting COVID-19 response operations in Cleveland, Jan. 20, 2022.

SARS CoV-2 and the illness it causes, COVID-19, have exacted a heavy toll on the global community. Most of the identified disease has been in the elderly and adults. The goal of this analysis was to ascertain if user-built ESSENCE queries applied to records of outpatient MHS health care encounters are capable of detecting MIS-C cases that have not been identified or reported by local public health departments.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Article
3/1/2022
Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DoD photo by Reese Brown)

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 16 - 30 Page 2 of 13
Refine your search
Last Updated: October 14, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery