Back to Top Skip to main content Skip to sub-navigation

Update: Heat Illness, Active Component, U.S. Armed Forces, 2020

Fort Jackson, SC. A trainee with 2nd Battalion, 60th Infantry Regiment puts his arms in an arm immersion cooling tank during training. The tanks allow Soldiers to rapidly cool by putting their forearms into a tank of ice water. (Photo by Saskia Gabriel) Fort Jackson, SC. A trainee with 2nd Battalion, 60th Infantry Regiment puts his arms in an arm immersion cooling tank during training. The tanks allow Soldiers to rapidly cool by putting their forearms into a tank of ice water. (Photo by Saskia Gabriel)

Recommended Content:

Medical Surveillance Monthly Report

WHAT ARE THE NEW FINDINGS?

During 2016–2020, annual rates of both heat stroke and heat exhaustion among active component service members peaked in 2018 but were the lowest in 2020. The annual numbers of heat illnesses diagnosed in Iraq and Afghanistan have trended downward since 2016.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

This analysis demonstrates again the magnitude of risks of heat illnesses among active component service members and the enhanced risks associated with sex age, location of assignment, and occupational categories. Recognition of these risk factors should inform the preventive measures that military leaders, trainers, and service members routinely employ.

ABSTRACT

In 2020, there were 475 incident cases of heat stroke and 1,667 incident cases of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion were 0.36 cases and 1.26 cases per 1,000 person-years; both were the lowest annual rates in the 2016-2020 surveillance period. In 2020, subgroup-specific rates of both incident heat stroke and heat exhaustion were highest among males, those less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. During 2016–2020, a total of 341 heat illnesses were documented among service members in Iraq and Afghanistan; 7.0% (n=24) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

BACKGROUND

Heat illness refers to a group of disorders that occur when the elevation of core body temperature surpasses the compensatory limits of thermoregulation.1 Heat illness is the result of environmental heat stress and/or exertion and represents a set of conditions that exist along a continuum from less severe (heat exhaustion) to potentially life threatening (heat stroke).

Heat exhaustion is caused by the inability to maintain adequate cardiac output because of strenuous physical exertion and environmental heat stress.1,2 Acute dehydration often accompanies heat exhaustion but is not required for the diagnosis.3 The clinical criteria for heat exhaustion include a core body temperature greater than 100.5 ºF/38 ºC and less than 104 ºF/40 ºC at the time of or immediately after exertion and/or heat exposure, physical collapse at the time of or shortly after physical exertion, and no significant dysfunction of the central nervous system. If any central nervous system dysfunction develops (e.g., dizziness or headache), it is mild and rapidly resolves with rest and cooling measures (e.g., removal of unnecessary clothing, relocation to a cooled environment, and oral hydration with cooled, slightly hypotonic solutions).1–4 

Heat stroke is a debilitating illness characterized clinically by severe hyperthermia (i.e., a core body temperature of 104 ºF/40 ºC or greater), profound central nervous system dysfunction (e.g., delirium, seizures, or coma), and additional organ and tissue damage.1,4,5 The onset of heat stroke should prompt aggressive clinical treatments, including rapid cooling and supportive therapies such as fluid resuscitation to stabilize organ function.1,5 The observed pathologic changes in several organ systems are thought to occur through a complex interaction between heat cytotoxicity, coagulopathies, and a severe systemic inflammatory response.1,5 Multiorgan system failure is the ultimate cause of mortality due to heat stroke.5

Timely medical intervention can prevent milder cases of heat illness (e.g., heat exhaustion) from becoming severe (e.g., heat stroke) and potentially life threatening. However, even with medical intervention, heat stroke may have lasting effects, including damage to the nervous system and other vital organs and decreased heat tolerance, making an individual more susceptible to subsequent episodes of heat illness.6–8 Furthermore, the continued manifestation of multiorgan system dysfunction after heat stroke increases patients’ risk of mortality during the ensuing months and years.9,10

Strenuous physical activity for extended durations in occupational settings as well as during military operational and training exercises exposes service members to considerable heat stress because of high environmental heat and/or a high rate of metabolic heat production.11,12 In some military settings, wearing needed protective clothing or equipment may make it biophysically difficult to dissipate body heat.13,14 The resulting body heat burden and associated cardiovascular strain reduce exercise performance and increase the risk of heat-related illness.11,15

Over many decades, lessons learned during military training and operations in hot environments as well as a substantial body of research findings have resulted in doctrine, equipment, and preventive measures that can significantly reduce the adverse health effects of military activities in hot weather.16–22 Although numerous effective countermeasures are available, heat-related illness remains a significant threat to the health and operational effectiveness of military members and their units and accounts for considerable morbidity, particularly during recruit training in the U.S. military.11,23 Moreover, with the projected rise in the intensity and frequency of extreme heat conditions associated with global climate change, heat-related illnesses will likely represent an increasing challenge to the military.24–26

In the U.S. Military Health System (MHS), the most serious types of heat-related illness are considered notifiable medical events. Notifiable cases of heat illness include heat exhaustion and heat stroke. All cases of heat illness that require medical intervention or result in change of duty status are reportable.4

This report summarizes reportable medical events of heat illness as well as heat illness-related hospitalizations and ambulatory visits among active component service members during 2020 and compares them to the previous 4 years. Episodes of heat stroke and heat exhaustion are summarized separately.

METHODS

The surveillance period was 1 January 2016 through 31 December 2020. The surveillance population included all individuals who served in the active component of the Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. All data used to determine incident heat illness diagnoses were derived from records routinely maintained in the Defense Medical Surveillance System (DMSS). These records document both ambulatory encounters and hospitalizations of active component service members of the U.S. Armed Forces in fixed military and civilian (if reimbursed through the MHS) treatment facilities worldwide. In-theater diagnoses of heat illness were identified from medical records of service members deployed to Southwest Asia or the Middle East and whose health care encounters were documented in the Theater Medical Data Store. Because heat illnesses represent a threat to the health of individual service members and to military training and operations, the Armed Forces require expeditious reporting of these reportable medical events through any of the service specific electronic reporting systems; these reports are routinely transmitted and incorporated into the DMSS.

For this analysis, a case of heat illness was defined as an individual with 1) a hospitalization or outpatient medical encounter with a primary (first-listed) or secondary (second-listed) diagnosis of heat stroke (International Classification of Diseases, 9th Revision [ICD-9]: 992.0; International Classification of Diseases, 10th Revision [ICD-10]: T67.0*) or heat exhaustion (ICD-9: 992.3–992.5; ICD-10: T67.3*–T67.5*) or 2) a reportable medical event record of heat exhaustion or heat stroke.27 Because of an update to the Disease Reporting System internet (DRSi) medical event reporting system in July 2017, the type of reportable medical events for heat illness (i.e., heat stroke or heat exhaustion) could not be distinguished using reportable medical event records in DMSS data. Instead, information on the type of reportable medical event for heat illness during the entire 2016–2020 surveillance period was extracted directly from the records of the DRSi. It is important to note that MSMR analyses carried out before 2018 included diagnosis codes for other and unspecified effects of heat and light (ICD-9: 992.8 and 992.9; ICD-10: T67.8* and T67.9*) within the heat illness category “other heat illnesses.” These codes were excluded from the current analysis and the April MSMR analyses of 2018, 2019, and 2020. If an individual had a diagnosis for both heat stroke and heat exhaustion during a given year, only 1 diagnosis was selected, prioritizing heat stroke over heat exhaustion. Encounters for each individual within each calendar year then were prioritized in terms of record source with hospitalizations prioritized over reportable events, which were prioritized over ambulatory visits.

For surveillance purposes, a “recruit trainee” was defined as an active component service member (grades E1–E4) who was assigned to 1 of the services’ 8 recruit training locations (per the individual’s initial military personnel record). For this report, each service member was considered a recruit trainee for the period corresponding to the usual length of recruit training in his or her service. Recruit trainees were considered a separate category of enlisted service members in summaries of heat illnesses by military grade overall.

Records of medical evacuations from the U.S. Central Command (CENTCOM) area of responsibility (AOR) (e.g., Iraq or Afghanistan) to a medical treatment facility outside the CENTCOM AOR were analyzed separately. Evacuations were considered case defining if affected service members had at least 1 inpatient or outpatient heat illness medical encounter in a permanent military medical facility in the U.S. or Europe from 5 days before to 10 days after their evacuation dates.

It should be noted that medical data from sites that were using the new electronic health record for the Military Health System, MHS GENESIS, between July 2017 and October 2019 are not available in the DMSS. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, medical encounter data for individuals seeking care at any of these facilities from July 2017 through October 2019 were not included in the current analysis.

RESULTS

In 2020, there were 475 incident cases of heat stroke and 1,667 incident cases of heat exhaustion among active component service members (Table 1). The crude overall incidence rates of heat stroke and heat exhaustion were 0.36 and 1.26 per 1,000 person-years (p-yrs), respectively. In 2020, subgroup-specific incidence rates of heat stroke were highest among males, those less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations (Table 1). The rates of incident heat stroke among Marine Corps and Army members were more than 9 times the rates among Air Force and Navy members. The incidence rate of heat stroke among female service members was 48.2% lower than the rate among male service members. There were only 19 cases of heat stroke reported among recruit trainees, but their incidence rate was more than 2 times that of other enlisted members and officers.

The crude overall incidence rate of heat exhaustion among females was 22.0% lower than the rate among males (Table 1). In 2020, compared to their respective counterparts, service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and service members in combat-specific occupations had notably higher rates of incident heat exhaustion.

Crude (unadjusted) annual incidence rates of heat stroke increased steadily from 0.37 per 1,000 p-yrs in 2016 to 0.46 cases per 1,000 p-yrs in 2018 but then dropped to 0.41 cases per 1,000 p-yrs in 2019 and then to 0.36 cases per 1,000 p-yrs in 2020 (Figure 1). In the last year of the surveillance period, there were fewer heat stroke-related ambulatory visits than in any of the previous 4 years. Reportable medical events of heat stroke in 2020 (n=132) were the fewest since 2016 (n=93).
Crude annual rates of incident heat exhaustion were stable during 2016–2017, increased to a peak of 1.73 cases per 1,000 p-yrs in 2018, fell slightly in 2019, and then dropped sharply to the lowest value in the surveillance period, 1.26 per 1,000 p-yrs, in 2020 (Figure 2).

Heat illnesses by location

During the 5-year surveillance period, a total of 12,484 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide (Table 2). Of the total heat illness cases, 6.2% occurred outside of the U.S., including 315 in Okinawa and 463 at 59 other locations in Europe, East Asia, Southwest Asia, Africa, and Cuba. Four Army installations in the U.S. accounted for slightly more than one third (34.0%) of all heat illnesses during the period: Fort Benning, GA (n=1,849); Fort Bragg, NC (n=971); Fort Campbell, KY (n=756); and Fort Polk, LA (n=674). Six other locations accounted for an additional one-quarter (26.5%) of heat illness events: Marine Corps Base (MCB) Camp Lejeune/Cherry Point, NC (n=1,050); Marine Corps Recruit Depot Parris Island/ Beaufort, SC (n=576); Naval Medical Center San Diego, CA (n=531); MCB Camp Pendleton, CA (n=467); Fort Hood, TX (n=365); and Okinawa, Japan (n=315). Of these 10 locations with the most heat illness events, 6 are located in the southeastern U.S. During the surveillance period, 20 locations had more than 100 cases each; together, these locations accounted for over three-quarters (76.6%) of all cases among active component members.

Heat illnesses in Iraq and Afghanistan

During the 5-year surveillance period, a total of 341 heat illnesses were diagnosed and treated in Iraq and Afghanistan (Figure 3). Of the total cases, 7.0% (n=24) were diagnosed as heat stroke. Deployed service members who were affected by heat illnesses were most frequently male (n=279; 81.8%); non-Hispanic white (n=204; 59.8%); 20–24 years old (n=188; 55.1%); in the Army (n=163; 47.8%); enlisted (n=330; 96.8%); and in repair/engineering (n=109; 32.0%) or combat-specific (n=85; 24.9%) occupations (data not shown). During the surveillance period, 3 service members were medically evacuated for heat illnesses from Iraq or Afghanistan; 2 of the evacuations took place in the summer months (May 2017 and July 2016) and 1 in November 2020.

EDITORIAL COMMENT

This annual update of heat illnesses among service members in the active component documented that the unadjusted annual rates of incident heat stroke and heat exhaustion peaked in 2018 and then declined in 2019 and 2020. In fact the crude annual incidence rates of heat stroke and heat exhaustion in 2020 represent the lowest rates of the 5-year surveillance period.
There are significant limitations to this update that should be considered when interpreting the results. Similar heat related clinical illnesses are likely managed differently and reported with different diagnostic codes at different locations and in different clinical settings. Such differences undermine the validity of direct comparisons of rates of nominal heat stroke and heat exhaustion events across locations and settings. Also, heat illnesses during training exercises and deployments that are treated in field medical facilities are not completely ascertained as cases for this report. In addition, it should be noted that the guidelines for mandatory reporting of heat illnesses were modified in the 2017 revision of the Armed Forces guidelines and case definitions for reportable medical events and carried into the 2020 revision.4 In this updated version of the guidelines and case definitions, the heat injury category was removed, leaving only case classifications for heat stroke and heat exhaustion. To compensate for such possible variation in reporting, the analysis for this update, as in previous years, included cases identified in DMSS records of ambulatory care and hospitalizations using a consistent set of ICD-9/ICD-10 codes for the entire surveillance period. However, it also is important to note that the exclusion of diagnosis codes for other and unspecified effects of heat and light (formerly included within the heat illness category “other heat illnesses”) in the current analysis precludes the direct comparison of numbers and rates of cases of heat exhaustion to the numbers and rates of “other heat illnesses” reported in MSMR updates before 2018.

As has been noted in previous MSMR heat illness updates, results indicate that a sizable proportion of cases identified through DMSS records of ambulatory visits did not prompt mandatory reports through the reporting system.23 However, this study did not directly ascertain the overlap between hospitalizations and reportable events and the overlap between reportable events and outpatient encounters. It is possible that cases of heat illness, whether diagnosed during an inpatient or outpatient encounters, were not documented as reportable medical events because treatment providers were not attentive to the criteria for reporting or because of ambiguity in interpreting the criteria (e.g., the heat illness did not result in a change in duty status or the core body temperature measured during/ immediately after exertion or heat exposure was not available). Underreporting is especially concerning for cases of heat stroke because it may reflect insufficient attentiveness to the need for prompt recognition of cases of this dangerous illness and for timely intervention at the local level to prevent additional cases.

In spite of its limitations, this report demonstrates that heat illnesses continue to be a significant and persistent threat to both the health of U.S. military members and the effectiveness of military operations. Of all military members, the youngest and most inexperienced Marine Corps and Army members (particularly those training at installations in the southeastern U.S.) are at highest risk of heat illnesses, including heat stroke, exertional hyponatremia, and exertional rhabdomyolysis (see the other articles in this issue of the MSMR).

Commanders, small unit leaders, training cadre, and supporting medical personnel— particularly at recruit training centers and installations with large combat troop populations—must ensure that the military members whom they supervise and support are informed regarding the risks, preventive countermeasures (e.g., water consumption), early signs and symptoms, and first-responder actions related to heat illnesses.16–22,28–30 Leaders should be aware of the dangers of insufficient hydration on the one hand and excessive water intake on the other; they must have detailed knowledge of, and rigidly enforce countermeasures against, all types of heat illnesses. 

Policies, guidance, and other information related to heat illness prevention and sun safety among U.S. military members are available online through the Army Public Health Center website at https://phc.amedd.army.mil/topics/discond/hipss/Pages/default.aspx.

REFERENCES

1. Atha WF. Heat-related illness. Emerg Med Clin North Am. 2013;31(4):1097–1108.

2. Simon HB. Hyperthermia. N Engl J Med. 1993;329(7):483–487.

3. O’Connor FG, Sawka MN, Deuster P. Disorders due to heat and cold. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine. 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:692–693.

4. Armed Forces Health Surveillance Branch, Defense Health Agency. In collaboration with U.S. Air Force School of Aerospace Medicine, Army Public Health Center, and Navy and Marine Corps Public Health Center. Armed Forces Reportable Medical Events. Guidelines and Case Definitions, January 2020. Accessed 18 March 2021. https://health.mil/Reference-Center/Publications/2020/01/01/Armed-Forces-Reportable-Medical-Events-Guidelines

5. Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–647.

6. Epstein Y. Heat intolerance: predisposing factor or residual injury? Med Sci Sports Exerc. 1990;22(1):29–35.

7. O’Connor FG, Casa DJ, Bergeron MF, et al. American College of Sports Medicine roundtable on exertional heat stroke—return to duty/return to play: conference proceedings. Curr Sports Med Rep. 2010;9(5):314–321.

8. Shapiro Y, Magazanik A, Udassin R, Ben-Baruch G, Shvartz E, Shoenfeld Y. Heat intolerance in former heatstroke patients. Ann Intern Med. 1979;90(6):913–916.

9. Dematte JE, O’Mara K, Buescher J, et al. Nearfatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med. 1998;129(3):173–181.

10. Wallace RF, Kriebel D, Punnett L, Wegman DH, Amoroso PJ. Prior heat illness hospitalization and risk of early death. Environ Res. 2007;104(2):290–295.

11. Carter R 3rd, Cheuvront SN, Williams JO, et al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc. 2005;37(8):1338–1344.

12. Hancock PA, Ross JM, Szalma JL. A meta-analysis of performance response under thermal stressors. Hum Factors. 2007;49(5):851–877.

13. Caldwell JN, Engelen L, van der Henst C, Patterson MJ, Taylor NA. The interaction of body armor, low-intensity exercise, and hot-humid conditions on physiological strain and cognitive function. Mil Med. 2011;176(5):488–493.

14. Maynard SL, Kao R, Craig DG. Impact of personal protective equipment on clinical output and perceived exertion. J R Army Med Corps. 2016;162(3):180–183.

15. Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2012;97(3):327–332.

16. Goldman RF. Introduction to heat-related problems in military operations. In: Lounsbury DE, Bellamy RF, Zajtchuk R, eds. Textbook of Military Medicine: Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:3–49.

17. Sonna LA. Practical medical aspects of military operations in the heat. In: Lounsbury DE, Bellamy RF, Zajtchuk R, eds. Textbook of Military Medicine: Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:293–309.

18. Headquarters, Department of the Army and Air Force. Technical Bulletin, Medical 507, Air Force Pamphlet 48-152. Heat Stress Control and Heat Casualty Management. 7 March 2003.

19. Headquarters, United States Marine Corps, Department of the Navy. Marine Corps Order 6200.1E. Marine Corps Heat Injury Prevention Program. Washington DC: Department of the Navy; 6 June 2002.

20. Navy Environmental Health Center. Technical Manual NEHC-TM-OEM 6260.6A. Prevention and Treatment of Heat and Cold Stress Injuries. Published June 2007.

21. Webber BJ, Casa DJ, Beutler AI, Nye NS, Trueblood WE, O'Connor FG. Preventing exertional death in military trainees: recommendations and treatment algorithms from a multidisciplinary working group. Mil Med. 2016;181(4):311–318.

22. Lee JK, Kenefick RW, Cheuvront SN. Novel cooling strategies for military training and operations. J Strength Cond Res. 2015;29(suppl 11):S77–S81.

23. Armed Forces Health Surveillance Branch. Update: Heat illness, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(4):15–20.

24. Dahl K, Licker R, Abatzoglou JT, Declet-Barreto J. Increased frequency of and population exposure to extreme heat index days in the United States during the 21st century. Environ Res Commun. 2019;1:075002.

25. Parsons IT, Stacey MJ, Woods DR. Heat adaptation in military personnel: mitigating risk, maximizing performance. Front Physiol. 2019;10:1485.

26. Kenny GP, Notley SR, Flouris AD, Grundstein A. Climate change and heat exposure: impact on health in occupational and general populations. In: Adams W, Jardine J, eds. Exertional Heat Illness: A Clinical and Evidence-Based Guide. Cham, Switzerland: Springer Nature; 2020:225–261.

27. Armed Forces Health Surveillance Branch. Surveillance case definition: Heat illness. Accessed on 18 March 2021. https://health.mil/Reference-Center/Publications/2019/10/01/Heat-Injuries

28. Headquarters, Department of the Army Training and Doctrine Command. Memorandum. TRADOC Heat Illness Prevention Program 2018. 8 January 2018.

29. Kazman JB, O’Connor FG, Nelson DA, Deuster PA. Exertional heat illness in the military: risk mitigation. In: Hosokawa Y, ed. Human Health and Physical Activity During Heat Exposure. Cham, Switzerland: SpringerBriefs in Medical Earth Sciences; 2018:59–71.

30. Nye NS, O’Connor FG. Exertional heat illness considerations in the military. In: Adams W, Jardine J, eds. Exertional Heat Illness: A Clinical and Evidence- Based Guide. Cham, Switzerland: Springer Nature; 2020:181–210.

FIGURE 1. Incident casesa and incidence rates of heat stroke, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2016–2020
FIGURE 2. Incident casesa and incidence rates of heat exhaustion, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2016–2020
FIGURE 3. Numbers of heat illnesses diagnosed in Iraq/Afghanistan, active component, U.S. Armed Forces, 2016–2020

TABLE 1. Incident casesa and incidence ratesb of heat illness, by demographic and military characteristics, active component, U.S. Armed Forces, 2020

TABLE 2. Heat injury eventsa, by location of diagnosis/report (with at least 100 cases during the period), active component, U.S. Armed Forces, 2016–2020






You also may be interested in...

Brief Report: Prevalence of Screening Positive for Post-Traumatic Stress Disorder Among Service Members Following Combat-Related Injury

Article
8/1/2021
U.S. Army Sgt. Arne F. Eastlund of the California Army National Guard’s 49th Military Police Brigade was nearly killed in 2005 in Baghdad, Iraq, during Operation Iraqi Freedom. An improvised explosive device destroyed his military vehicle and killed comrade Sgt. 1st Class Isaac S. Lawson. Eastlund survived and has continued serving Cal Guard even as a retired war veteran. (U.S. Army National Guard photo provided by Arne Eastlund)

Recommended Content:

Medical Surveillance Monthly Report

Update: Mental Health Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2016–2020

Article
8/1/2021
 Capt. Elrico Hernandez, battalion physician assistant for 2nd Battalion, 3rd Infantry Regiment, 3rd Stryker Brigade Combat Team, 2nd Infantry Division, discusses a training scenario that is part of the first Primary Care Behavioral Health seminar. The new program is being undertaken by medical care providers throughout United States Division-North in order to provide better mental health screening for Soldiers

Update: Mental Health Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report

Mental Health Disorders, Behavioral Health Problems, Fatigue and Sleep Outcomes in Remotely Piloted Aircraft/Manned Aircraft Pilots, and Remotely Piloted Aircraft Crew, U.S. Air Force, 1 October 2003–30 June 2019

Article
8/1/2021
U.S. Air Force Capt. Danielle ‘Dani’ Pavone, an MQ-9 pilot with the 110th Wing, speaks during a training scenario through a plexiglass barrier to Staff Sgt. Justin Brandt, an MQ-9 sensor operator at the Battle Creek Air National Guard Base, Battle Creek, Michigan. The plexiglass mitigates risk of coronavirus transmission during the pandemic. (U.S. Air National Guard photo by Staff Sgt. Bethany Rizor)

Recommended Content:

Medical Surveillance Monthly Report

Long-Acting Reversible Contraceptive Use, Active Component Service Women, U.S. Armed Forces, 2016–2020

Article
7/1/2021
Lt. Col. Paula Neemann, 15th Healthcare Operations Squadron clinical medicine flight commander, demonstrates several birth options, such as an intrauterine device, at the 15th MDG's contraceptive clinic at Joint Base Pearl Harbor-Hickam, Hawaii, May 6, 2021. The contraceptive clinic opened June 7 to service beneficiaries and provide same-day procedures without a referral. (U.S. Air Force photo by 2nd Lt. Benjamin Aronson)

Long-Acting Reversible Contraceptive Use, Active Component Service Women, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report

The Evolution of Military Health Surveillance Reporting: A Historical Review

Article
7/1/2021
The inaugural issue of the Medical Surveillance Monthly Report

The Evolution of Military Health Surveillance Reporting: A Historical Review

Recommended Content:

Medical Surveillance Monthly Report

Oral Cavity and Pharynx Cancers, Active Component, U.S. Armed Forces, 2007–2019

Article
7/1/2021
Moist snuff, chewing tobacco is placed between cheek and gum. All varieties of smokeless tobacco can cause harmful effects on the oral cavity.

Oral Cavity and Pharynx Cancers, Active Component, U.S. Armed Forces, 2007–2019

Recommended Content:

Medical Surveillance Monthly Report

The Cost of Lower Extremity Fractures Among Active Duty U.S. Army Soldiers, 2017

Article
6/1/2021
X-ray image of a fractured tibia.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Medical Encounters for Snakebite Envenomation, Active and Reserve Components, U.S. Armed Forces, 2016–2020

Article
6/1/2021
Masters of camouflage, the Sidewinder Rattlesnakes are out and about aboard Marine Corps Logistics Base Barstow, California, May 11. Watch where you put your hands and feet, and observe children and pets at all times, as this is the natural habitat for these venomous snakes and a bite can cause serious medical problems. Notice the sharp arrow-shaped head with pronounced jaws, and the raised eye sockets, as well as the telltale rattles. Keep in mind, however, that rattles can be broken or lost, so you may or may not hear a rattle before they strike to protect themselves.

Brief Report: Medical Encounters for Snakebite Envenomation, Active and Reserve Components, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report

Early Identification of SARS-CoV-2 Emergence in the Department of Defense via Retrospective Analysis of 2019–2020 Upper Respiratory Illness Samples

Article
6/1/2021
Army Maj. Raymond Nagley, S-3 officer assigned to the 50th Regional Support Group (RSG), receives a nasal swab to screen for COVID-19 at Fort Hood, Texas, on Feb. 5, 2021, from Spc. Yoali Muniz, a lab tech assigned to the 7406th Troop Medical Clinic, based in Columbia, Missouri. The 50th RSG, a Florida Guard unit based in Homestead, Florida, is preparing for deployment to Poland. (U.S. Army Guard photo by Sgt. 1st Class Shane Klestinski)

Early Identification of SARS-CoV-2 Emergence in the Department of Defense via Retrospective Analysis of 2019–2020 Upper Respiratory Illness Samples

Recommended Content:

Medical Surveillance Monthly Report

Department of Defense Mid-Season Vaccine Effectiveness Estimates for the 2019– 2020 Influenza Season

Article
6/1/2021
201019-N-PC065-1062 NORFOLK (Oct. 19, 2020) Hospital Corpsman 2nd Class Sashee Robinson, assigned to amphibious transport dock ship USS Arlington (LPD 24), administers an influenza vaccine to Machinery Repairman 2nd Class Hannah Swearingen in medical aboard the Arlington. Influenza vaccines are an annual medical readiness requirement throughout the Department of Defense. (U.S. Navy photo by Mass Communication Specialist 2nd Class John Bellino/Released)

Department of Defense Mid-Season Vaccine Effectiveness Estimates for the 2019– 2020 Influenza Season

Recommended Content:

Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2020

Article
5/1/2021
Navy Lt. James E. Lamb, left, and Sgt. Ryan Eskandary exercise aboard USS Pearl Harbor, May 6. Lamb is a Minneapolis native and serves as a firepower control team leader. Eskandary hails from St. Paul, Minn., and serves as a forward observer. Both serve with the 11th Marine Expeditionary Unit’s command element. The unit embarked USS Makin Island, USS New Orleans and USS Pearl Harbor in San Diego, Nov. 14, beginning a seven-month deployment to the Western Pacific, Horn of Africa and Middle East regions. (U.S. Navy photo by Cpl. Tommy Huynh, Arabian Sea/Released)

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2020

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2020

Article
5/1/2021
A U.S. Marine Corps drill instructor with Golf Company, 2nd Recruit Training Battalion, motivates a recruit during a Marine Corps Martial Arts Program (MCMAP) training session at Marine Corps Recruit Depot, San Diego, Aug. 2, 2021. The drill instructors ensured recruits conducted the techniques safely and effectively during the training session. (U.S. Marine Corps photo by Cpl. Zachary T. Beatty)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2020

Article
5/1/2021
U.S. Army Col. Kris Marshall, co-director of Exercise Agile Spirit 2021, salutes during a closing ceremony August 6, 2021 at Orpholo Training Area, Georgia. Agile Spirit 21 promotes regional stability and security, while increasing readiness, strengthening partner capabilities and fostering trust. Agile Spirit provides vital opportunities, not only for multiple U.S. services to work together, but also for integrated, total force training with U.S. Reserve and National Guard units and our partner nations’ militaries to ensure interoperability. (U.S. Army National Guard photo by Cpl. Rydell Tomas)

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2020

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2020

Article
5/1/2021
MAYPORT, Fla. (Sept. 18, 2020) – Cmdr. Mary Gracia, a pediatric nurse practitioner at Naval Branch Health Clinic Mayport, checks five-year-old Gabriella’s ears. Gracia, a native of McAllen, Texas, says, “It's been an honor and a privilege to impart my expertise to the children of our active duty members who are graciously serving our country. These children, our future leaders, prayers lifted and bountiful blessings for each one. And to the children I've helped during overseas deployments, prayers continued.” (U.S. Navy photo by Jacob Sippel, Naval Hospital Jacksonville/Released).

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2020

Recommended Content:

Medical Surveillance Monthly Report

Medical Evacuations out of the U.S. Central Command, Active and Reserve Components, U.S. Armed Forces, 2020

Article
5/1/2021
U.S. Army Soldiers from the 115th Brigade Support Battalion, 1st Armored Brigade Combat Team, evacuate casualties onto waiting HH-60M MEDEVAC Blackhawk helicopters from Charlie Company, 6th Battalion, 101st Combat Aviation Brigade during Combined Resolve XV, Feb. 27, 2021, at Hohenfels Training Area. Combined Resolve XV is a Headquarters Department of the Army directed Multinational exercise designed to build 1st Armored Brigade Combat Team, 1st Cavalry Division’s readiness and enhance interoperability with allied forces and partner nations to fight and win against any adversary.(U.S. Army photo by Sgt. 1st Class Garrick W. Morgenweck)

Medical Evacuations out of the U.S. Central Command, Active and Reserve Components, U.S. Armed Forces, 2020

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.