Skip to main content

Military Health System

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2016–June 2020

Image of A student in the army participates in a cold-water immersion training. A student participates in a cold-water immersion training at Fort McCoy, Wis., Jan. 17, 2020, as a part of the Cold-Weather Operations Course. (Photo By Scott Sturkol, Army)

Recommended Content:

Medical Surveillance Monthly Report

Abstract

From July 2020 through June 2021, a total of 539 members of the active (n=469) and reserve (n=70) components had at least 1 medical encounter with a pri­mary diagnosis of cold injury. The crude overall incidence rate of cold injury for all active component service members in 2020–2021 (35.4 per 100,000 person-years [p-yrs]) was higher than the rate for the 2019–2020 cold season (27.5 per 100,000 p-yrs). In 2020–2021, frostbite was the most common type of cold injury among active component service members in all 4 services. Among active component members during the 2016–2021 cold seasons, overall rates of cold injuries were generally highest among male service members, non-Hispanic Black service members, the youngest (less than 20 years old), and those who were enlisted. The number of cold inju­ries associated with overseas deployments during the 2020–2021 cold season (n=10) was the lowest count during the 5-year surveillance period. Immersion foot accounted for half (n=5) of the cold weather injuries diagnosed and treated in service members deployed outside of the U.S. during the 2020–2021 cold season.

What are the new findings?

For all active component service mem­bers, the rate of cold weather injuries in 2020–2021 increased compared to the previous cold year. Cold injury rates were much higher among members of the Marine Corps and Army. The number of cold injuries associated with deploy­ment during 2020–2021 was the same as last cold year and lower than the preceding cold years.

What is the impact on Readiness and Force health protection?

Military training and combat operations will require continued emphasis on effective cold weather injury prevention strategies and adherence to the policies and procedures in place to protect service members against such injuries.

Background

Cold weather injuries are of significant military concern because of their adverse impact on operations and the high financial costs of treatment and disability.1,2 In response, the U.S. Armed Forces have developed and improved training, doctrine, procedures, and protective equipment and clothing to counter the threat from cold environments.3–8 Although these measures are highly effective, cold injuries have continued to affect hundreds of service members each year because of exposure to cold and wet environments.9

The term cold weather injuries is used to describe injuries that have a central effect, such as hypothermia, as well as injuries that primarily affect the peripheries of the body, such as frostbite and immersion injuries. The human physiologic response to cold exposure is to retard heat loss and preserve core body temperature, but this response may not be sufficient to prevent hypothermia if heat loss is prolonged.9 Moreover, the response includes constriction of the peripheral (superficial) vascular system, which may result in non-freezing injuries or hasten the onset of actual freezing of tissues (frostbite).9

Hypothermia occurs when the core temperature of the body falls below 95 °F.7 The most common mechanisms of accidental hypothermia are convective heat loss to cold air and conductive heat loss to water.10 Freezing temperatures are not required to produce hypothermia.10 In response to cold stress, peripheral blood vessels constrict and the hypothalamus stimulates heat production through shivering and elevated thyroid, adrenal, and catecholamine activity.10 The sympathetic nervous system mediates further vasoconstriction to minimize heat loss by reducing blood flow to the extremities, where the most cooling occurs.10 As the body's basal metabolic rate decreases, core temperature falls, body functions slow down, and muscular and cerebral functions are impaired.10 Neurologic functioning begins declining even above a core body temperature of 95 °F.11 Severe hypothermia can lead to pulmonary edema, reduced heart rate, coma, ventricular arrhythmias (including ventricular fibrillation), and asystole.10–12

Cold injuries affecting the body's peripheries can be classified as freezing and non-freezing injuries.13 Freezing peripheral injury is defined as the damage sustained by tissues when exposed to temperatures below freezing.13 The tissue damage of frostbite is the result of both direct cold-induced cell death and the secondary effects of microvascular thrombosis and subsequent ischemia.14 Rapid freezing generally results in extra- and intracellular ice crystal formation.15 These crystals cause direct injury to the cell membrane that results in cellular dehydration, lipid derangement, electrolyte fluxes as well as membrane lysis, and cell death.14–16 An inflammatory process follows, resulting in tissue ischemia and additional cell death.15 The initial cellular damage and the ensuing inflammatory processes are worsened with thawing of the affected area.15,16 With rewarming, edema from melting ice crystals leads to epidermal blister formation and ischemia-reperfusion injury may be initiated14–16; vasoconstriction and platelet aggregation caused by inflammatory mediators, prostaglandins, and thromboxanes exacerbate ischemia.17 The areas of the body most frequently affected by frostbite include the ears, nose, cheeks, chin, fingers, and toes.18,19 A substantial proportion of patients with peripheral frostbite experience permanent changes in their microcirculation and disruption of local neurological functions (e.g., reduced sensation in the affected area).19 Although most frostbite damage is minor, severe injury may lead to impaired functioning and ability to work because of cold hypersensitivity, chronic ulceration, vasospasm, localized osteoarthritis, and/or chronic pain.14,19 

Non-freezing peripheral cold injury includes a spectrum of localized injuries to the soft tissues, nerves, and vasculature of distal extremities that result from prolonged exposure (12 to 48 hours) to wet, cold (generally 32 to 59 °F) conditions; the injury process generally happens at a slower rate in warmer water.13,20 Although non-freezing peripheral cold injuries most often involve feet (immersion foot), any dependent body part can be affected by the condition, including the hands.21 Immersion foot generally presents as waterlogging of the feet, with the most marked effect occurring in the soles.17,20 The foot becomes hyperemic (increased blood flow), painful, and swollen with continuous exposure; progression to blistering, decreased blood flow, ulceration, and gangrene is gradual.17,20 Long-term complications of non-freezing cold injury such as immersion foot are similar to (e.g., hypersensitivity to cold, chronic pain) and as debilitating as (e.g., severe pain provoked by walking) those produced by frostbite.14,16,17,20

Factors that increase the risk of cold weather injuries include outdoor exposure, inadequate and/or wet clothing, cold water submersion, older age, exhaustion, dehydration, inadequate caloric intake, alcohol use, smoking (frostbite), previous cold injury (frostbite or immersion foot), chronic disease (e.g., peripheral vascular disease, diabetes), and medications that impair compensatory responses (e.g., oral antihyperglycemics, beta-blockers, general anesthetic agents).12–14,17–19 Situational factors that increase risk of immersion foot include immobility, wet socks, and constricting boots.17,22

Traditional measures to counter the dangers associated with cold environments include minimizing loss of body heat and protecting superficial tissues through such means as protective clothing, shelter, physical activity, and nutrition. However, military training or mission requirements in cold and wet weather may place service members in situations where they may be unable to be physically active, find warm shelter, or change wet or damp clothing.2–4

For the military, continuous surveillance of cold weather injuries is essential to inform steps to reduce their impact as well as to remind leaders of this predictable threat. Since 2004, the MSMR has published an annual update on the incidence of cold weather injuries that affected U.S. military members during the 5 most recent cold seasons.23 The content of this 2021 report addresses the occurrence of such injuries during the cold seasons from July 2016 through June 2021. The timing of the annual updates is intended to call attention to the recurring risks of such injuries as winter approaches in the Northern Hemisphere, where most members of the U.S. Armed Forces are assigned.

Methods

The surveillance period was 1 July 2016 through 30 June 2021. The surveillance population included all individuals who served in the active or reserve component of the U.S. Armed Forces at any time during the surveillance period. For analysis purposes, "cold years" or "cold seasons" were defined as 1 July through 30 June intervals so that complete cold weather seasons could be represented in year-to-year summaries and comparisons.

Because cold weather injuries represent a threat to the health of individual service members and to military training and operations, the U.S. Armed Forces require expeditious reporting of these reportable medical events (RMEs) via one of the service-specific electronic reporting systems; these reports are routinely incorporated into the Defense Medical Surveillance System (DMSS). For this analysis, the DMSS and the Theater Medical Data Store (which maintains electronic records of medical encounters of deployed service members) were searched for records of RMEs and inpatient and outpatient care for the diagnoses of interest (frostbite, immersion injury, and hypothermia). A case was defined by the presence of an RME or one of any qualifying International Classification of Diseases, 9th or 10th revision (ICD-9 and ICD-10, respectively) code in the first diagnostic position of a record of a health care encounter (Table 1). The Department of Defense guidelines for RMEs require the reporting of cases of hypothermia, freezing peripheral injuries (i.e., frostbite), and non-freezing peripheral injuries (i.e., immersion injuries, chilblains).24 Cases of chilblains are not included in this report because the condition is common, infrequently diagnosed, usually mild in severity, and thought to have minimal medical, public health, or military impacts. Because of an update to the Disease Reporting System internet (DRSi) medical event reporting system in July 2017, the type of RMEs for cold injury (i.e., frostbite, immersion injury, hypothermia) could not be distinguished using RME records in DMSS data. Instead, information on the type of RME for cold injury between July 2017 and June 2021 were extracted from DRSi and then combined with DMSS data.

To estimate the number of unique individuals who suffered a cold injury each cold season and to avoid counting follow-up health care encounters after single episodes of cold injury, only 1 cold injury per individual per cold season was included. A slightly different approach was taken for summaries of the incidence of the different types of cold injury diagnoses. In counting types of diagnoses, 1 of each type of cold injury per individual per cold season was included. For example, if an individual was diagnosed with immersion foot at one point during a cold season and then with frostbite later during the same cold season, each of those different types of injury would be counted in the tally of injuries. If a service member had multiple medical encounters for cold injuries on the same day, only 1 encounter was used for analysis (hospitalizations were prioritized over ambulatory visits, which were prioritized over RMEs).

Annual incidence rates of cold injuries among active component service members were calculated as incident cold injury diagnoses per 100,000 person-years (p-yrs) of service. Annual rates of cold injuries among reservists were calculated as cases per 100,000 persons using the total number of reserve component service members for each year of the surveillance period. Counts of persons were used as the denominator in these calculations because information on the start and end dates of active duty service periods of reserve component members was not available.

The numbers of cold injuries were summarized by the locations at which service members were treated for these injuries as identified by the Defense Medical Information System Identifier (DMIS ID) recorded in the medical records of the cold injuries. Because such injuries may be sustained during field training exercises, temporary duty, or other instances for which a service member may not be located at his/her usual duty station, DMIS ID was used as a proxy for the location where the cold injury occurred.

It should be noted that medical data from sites that were using the new electronic health record for the Military Health System, MHS GENESIS, between July 2017 and October 2019 are not available in the DMSS. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, medical encounter data for individuals seeking care at any of these facilities from July 2017 through October 2019 were not included in the current analysis.

Results

2020–2021 cold season

From July 2020 through June 2021, a total of 539 members of the active (n=469) and reserve (n=70) components had at least 1 medical encounter with a primary diagnosis of cold injury (Table 2). The Army contributed nearly five-eighths (62.0%; n=291) of all cold injury diagnoses in the active component during the 2020–2021 cold season; across the services during this period, active component Army members had the highest rate of cold injury diagnoses (61.0 per 100,000 p-yrs). Active component Marine Corps members had the second highest rate of cold injury diagnoses during the 2020–2021 cold season (54.4 per 100,000 p-yrs). Navy service members (n=25) had the lowest service-specific rate of cold injuries during the 2020–2021 cold season (7.4 per 100,000 p-yrs) (Table 2, Figure 1).

This update for 2020–2021 represents the fifth time that annual rates of cold injuries for members of the reserve component were estimated. Army personnel (n=42) accounted for three-fifths (60.0%) of all reserve component service members (n=70) affected by cold injuries during 2020–2021 (Table 2). Service-specific annual rates of cold injuries among reserve component members were highest among those in the Marine Corps (22.8 per 100,000 persons) and lowest among those in the Navy (7.7 per 100,000 persons) (Figure 2).

When all injuries were considered, not just the numbers of individuals affected, frostbite was the most common type of cold injury (n=287; 61.1% of all cold injuries) among active component service members in 2020–2021 (Tables 3a–3d). In the Air Force during the 2020–2021 season, 81.8% of all cold injuries were frostbite, whereas the proportions in the Army (59.9%), Marine Corps (58.2%), and Navy (40.0%) were much lower. For all active component service members during 2020–2021, the proportions of total cold weather injuries that were hypothermia and immersion injuries were 16.0% and 23.0%, respectively (Tables 3a–3d). Among active component Air Force members, the numbers and rates of frostbite and hypothermia injuries in the 2020–2021 cold season were the highest of the past 5 years while the number and rate of immersion foot were the lowest during this period (Table 3c). Among active component Army and Marine Corps members, the numbers and rates of hypothermia injuries in the 2020–2021 cold season were the lowest during the 5-year (Table 3a, Table 3d). The number and rate of frostbite injuries among Marine Corps members during the 2020–2021 season were the highest of the past 5 years.

Five cold seasons: July 2016–June 2021

The crude overall incidence rate of cold injury for all active component service members in 2020–2021 (35.4 per 100,000 p-yrs) was 28.5% higher than the rate for the 2019–2020 cold season (27.5 per 100,000 p-yrs) (Table 2, Figure 1). Throughout the surveillance period, the cold injury rates were consistently higher among active component members of the Army and the Marine Corps than among those in the Air Force and Navy (Figure 1). In 2020–2021, the service-specific incidence rate for active component Army members (61.0 per 100,000 p-yrs) was higher than the 2019–2020 Army rate (48.7 per 100,000 p-yrs). For the Marine Corps, the active component rate for 2020–2021 increased 70.1% between the 2019–2020 season and the 2020–2021 season. Service-specific annual rates of cold injuries among reserve component members were consistently higher among those in the Army than among those in the Air Force or the Navy (Figure 2). As was true for active component Marine Corps members, the 2020–2021 rate of cold injuries among reserve component Marine Corps members was higher (157.5%) than the rate for the previous season.

During the 5-year surveillance period, the rates of cold injuries among members of the active components of the Navy, Air Force, and Marine Corps were higher among male than female service members (Tables 3a–3d). Among active component members in the Navy, Air Force, and Marine Corps, the overall rates among male service members ranged from 1.6 to 2.0 times higher than those among female service members. During 2016–2021, female service members had lower rates of immersion foot than did male service members. With the exception of the Army, female service members also had lower rates of frostbite; with the exception of the Marine Corps female service members had lower rates of hypothermia (Tables 3a–3d). For active component service members in all 4 services combined, the overall rate of cold injury was 40.4% higher among male service members (35.4 per 100,000 p-yrs) than among female service members (25.3 per 100,000 p-yrs) (data not shown).

In all of the services, overall rates of cold injuries were higher among non-Hispanic Black service members than among those of the other race/ethnicity groups. In particular, within the Marine Corps and Army and for all services combined, rates of cold injuries were more than twice as high among non-Hispanic Black service members as rates among either non-Hispanic White service members or those in the "other/unknown" race/ethnicity group (Tables 3a–3d). The major underlying factor in these differences is that rates of frostbite among non-Hispanic Black members from all services combined was more than 3 times that of the other race/ethnicity groups, with the biggest differences apparent in the Marine Corps (more than 5 times) and the Army (more than 2.8 times) (data not shown). Additionally, across the active components of all services during 2016–2021, non-Hispanic Black service members had incidence rates of cold injuries greater than the rates of other race/ethnicity groups in nearly every military occupational category (data not shown).

Across the services, rates of cold injuries were highest among the youngest service members and tended to decrease with increasing age (Tables 3a–3d). Enlisted members of all 4 services had higher rates than officers. In the Army, Air Force, and Marine Corps rates of all cold injuries combined were highest among service members in combat-specific occupations (infantry/artillery/combat engineering/armor) (Tables 3a, 3c–3d). For active component Navy members, rates of cold injuries during the 5-year period were highest among those in motor transport occupations (Table 3b).

During the 5-year surveillance period, the 2,466 service members who were affected by any cold injury included 2,140 (86.8%) from the active component and 326 (13.2%) from the reserve component. Of all affected reserve component members, 65.6% (n=214) were members of the Army (Table 2). Overall, soldiers accounted for slightly more than three-fifths (61.6%) of all cold injuries affecting active and reserve component service members (Table 2, Figure 3).

Of all active component service members who were diagnosed with a cold injury (n=2,140), 117 (5.5% of the total) were affected during basic training. The Army (n=39) and Marine Corps (n=74) accounted for 96.5% of all basic trainees affected by cold injuries (data not shown). Additionally, during the surveillance period, 62 service members who were diagnosed with cold injuries (2.9% of the total) were hospitalized, and the vast majority (83.9%) of the hospitalized cases were members of either the Army (n=39) or Marine Corps (n=13) (data not shown).

Cold injuries during deployments

During the 5-year surveillance period, a total of 72 cold injuries were diagnosed and treated in service members deployed outside of the U.S. (data not shown). Of these, 31 (43.0%) were frostbite, 31 (43.0%) were immersion injuries, and 10 (13.9%) were hypothermia. Of these 72 cold injuries, slightly more than one-eighth (13.8%) occurred in the most recent cold season (n=10). There were 10 cold injuries during the 2019–2020 cold season, 24 during 2018–2019, 17 during 2017–2018, and 11 during 2016–2017 (data not shown). Immersion injuries accounted for half (n=5; 50.0%) of the cold weather injuries diagnosed and treated in service members deployed outside of the U.S. during the 2020–2021 cold season.

Cold injuries by location

During the 5-year surveillance period, 23 military locations had at least 25 incident cold injuries (1 per person per year) among active and reserve component service members (Figure 4). Among these locations, those with the highest 5-year counts of incident injuries were Fort Wainwright, AK (n=270); Army Health Clinic Vilseck, Germany (n=95); Fort Campbell, KY (n=94); Naval Medical Center San Diego, CA (n=83); Camp Lejeune, NC (n=79); and Fort Carson, CO (n=77) (data not shown). During the 2020–2021 cold season, the numbers of incident cases of cold injuries were higher than the counts for the previous 2019–2020 cold season at 12 of the 23 locations (data not shown). The most noteworthy increase was observed at the Army's Fort Wainwright where there were 109 total cases diagnosed in 2020–2021, compared to 39 the year before (data not shown). Figure 4 shows the numbers of cold injuries during 2019–2020 and the median numbers of cases for the previous 4 years for those locations that had at least 25 cases during the surveillance period. For 13 of the 23 installations, the numbers of case in 2020–2021 were less than or equal to the median counts for the previous 4 years (Figure 4).

Editorial comment

In 2019–2020 cold season, there was a moderate decrease in the crude overall incidence rate of cold injuries among U.S. active and reserve component service members; however, the overall rates increased in 2020–2021 in all services except active component Navy service members.

In 2020–2021, frostbite was the most common type of cold injury among active component service members in all 4 of the services. Factors associated with increased risk of cold injury in previous years were again noted during the most recent cold season. Compared to their respective counterparts, overall rates of cold injuries were higher among male service members, non-Hispanic Black service members, the youngest (less than 20 years old), and those who were enlisted. Increased rates of cold injuries affected nearly all enlisted and officer occupations among non-Hispanic Black service members. Of note, rates of frostbite were markedly higher among non-Hispanic Blacks compared to non-Hispanic Whites and those in the other/unknown race/ethnicity group. These differences have been noted in prior MSMR updates, and the results of several studies suggest that other factors (e.g., physiologic differences and/or previous cold weather experience) are possible explanations for increased susceptibility.9,14,25–27 The number of cold injuries associated with deployment during 2019–2020 and 2020–2021 were the lowest number during the 5-year surveillance period; immersion injuries accounted for the majority of the cold weather injuries in service members deployed outside of the U.S. during the 2020–2021 cold season.

It should be noted that this analysis of cold injuries was unable to distinguish between injuries sustained during official military duties (training or operations) and injuries associated with personal activities not related to official duties. RMEs for non-freezing peripheral injuries were excluded if "chilblains" was listed in the case comments; however, there may have been some RMEs for chilblains that were misclassified as immersion injury if chilblains was not listed in the case comments. To provide for all circumstances that pose the threat of cold weather injury, service members should know well the signs of cold injury and how to protect themselves against such injuries whether they are training, operating, fighting, or recreating under wet and freezing conditions.

The most current cold injury prevention materials are available at https://phc.amedd.army.mil/topics/discond/cip/Pages/Cold-Weather-Casualties-and-Injuries.aspx

References

1. Candler WH, Freedman MS. Military medical operations in cold environments. In: Pandolf KB, Burr RE, eds. Medical aspects of harsh environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:553–566.

2. Paton BC. Cold, casualties, and conquests: the effects of cold on warfare. In: Pandolf KB, Burr RE, eds. Medical aspects of harsh environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:313–349.

3. Pozos RS (ed.). Section II: cold environments. In: Pandolf KB, Burr RE, eds. Medical aspects of harsh environments, Volume 1. Falls Church, VA: Office of the Surgeon General;2001:311–566.

4. DeGroot DW, Castellani JW, Williams JO, Amoroso PJ. Epidemiology of U.S. Army cold weather injuries, 1980–1999. Aviat Space Environ Med. 2003;74(5):564–570. 

5. Headquarters, Department of the Army. Technical Bulletin Medical 508. Prevention and Management of Cold-Weather Injuries. 1 April 2005.

6. Headquarters, Department of the Army, Training and Doctrine Command. TRADOC Regulation 350-29. Prevention of Heat and Cold Casualties. 18 July 2016.

7. Headquarters, Department of the Army, Training and Doctrine Command. TRADOC Regulation 350-6. Enlisted Initial Entry Training Policies and Administration. 9 August 2019.

8. Castellani JW, O'Brien C, Baker-Fulco C, Sawka MN, Young AJ. Sustaining health and performance in cold weather operations. Technical Note No. TN/02-2. Natick, MA: U.S. Army Research Institute of Environmental Medicine; October 2001.

9. Armed Forces Health Surveillance Branch. Update: Cold weather injuries, active and reserve component, U.S. Armed Forces, July 2013–June 2018. MSMR. 2018;25(11):10–17.

10. Jolly BT, Ghezzi KT. Accidental hypothermia. Emerg Med Clin North Am. 1992;10(2):311– 327.

11. Rischall ML, Rowland-Fisher A. Evidence-based management of accidental hypothermia in the emergency department. Emerg Med Pract. 2016;18(1):1–18

12. Biem J, Koehncke N, Classen D, Dosman J. Out of the cold: management of hypothermia and frostbite. CMAJ. 2003;168(3):305–311.

13. Imray CH, Oakley EH. Cold still kills: cold-related illnesses in military practice freezing and non-freezing cold injury. J R Army Med Corps. 2005;151(4):218–222.

14. Handford C, Thomas O, Imray CHE. Frostbite. Emerg Med Clin North Am. 2017;35(2):281–299.

15. Murphy JV, Banwell PE, Roberts AH, McGrouther DA. Frostbite: pathogenesis and treatment. J Trauma. 2000;48(1):171–178.

16. Petrone P, Kuncir EJ, Asensio JA. Surgical management and strategies in the treatment of hypothermia and cold injury. Emerg Med Clin North Am. 2003;21(4):1165–1178.

17. Imray C, Grieve A, Dhillon S, Caudwell Xtreme Everest Research Group. Cold damage to the extremities: frostbite and non-freezing cold injuries. Postgrad Med J. 2009;85(1007):481–488.

18. Harirchi I, Arvin A, Vash JH, Zafarmand V. Frostbite: incidence and predisposing factors in mountaineers. Br J Sports Med. 2005;39(12):898–901.

19. Ervasti O, Hassi J, Rintamaki H, et al. Sequelae of moderate finger frostbite as assessed by subjective sensations, clinical signs, and thermophysiological responses. Int J Circumpolar Health. 2000;59(2):137–145.

20. Hall A, Sexton J, Lynch B, et al. Frostbite and immersion foot care. Mil Med. 2018;183(suppl 2):168–171.

21. McMahon JA, Howe A. Cold weather issues in sideline and event management. Curr Sports Med Rep. 2012;11(3):135–141.

22. Centers for Disease Control and Prevention. Natural disasters and severe weather: trench foot or immersion foot. Accessed 20 October 2021. https://www.cdc.gov/disasters/trenchfoot.html

23. Army Medical Surveillance Activity. Cold injuries, active duty, U.S. Armed Forces, July 1999–June 2004. MSMR. 2004;10(5):2–10.

24. Armed Forces Health Surveillance Branch. Armed Forces Reportable Events Guidelines and Case Definitions, 2017. https://health.mil/Reference-Center/Publications/2020/01/01/Armed-Forces-Reportable-Medical-Events-Guidelines

25. Burgess JE, Macfarlane F. Retrospective analysis of the ethnic origins of male British Army soldiers with peripheral cold weather injury. J R Army Med Corps. 2009;155(1):11–15.

26. Maley MJ, Eglin CM, House JR, Tipton MJ. The effect of ethnicity on the vascular responses to cold exposure of the extremities. Eur J Appl Physiol. 2014;114(11):2369–2379.

27. Kuht JA, Woods D, Hollis S. Case series of non-freezing cold injury: epidemiology and risk factors. J R Army Med Corps. 2018; pii: jramc-2018-000992.

FIGURE 1. Annual incidence rates of cold injuries (1 per person per year), by service, active component, U.S. Armed Forces, July 2016–June 2021

FIGURE 2. Annual incidence rates of cold injuries (1 per person per year), by service, reserve component, U.S. Armed Forces, July 2016–June 2021

FIGURE 3. Numbers of service members who had a cold injury (1 per person per year), by service and cold season, active and reserve components, U.S. Armed Forces, July 2016–June 2021

FIGURE 4. Annual numbers of cold injuries (cold season 2020–2021) and median numbers of cold injuries (cold seasons 2016–2020) at locations with at least 25 cold injuries during the surveillance period, active component, U.S. Armed Forces, July 2016–June 2021

TABLE 1. ICD-9/ICD-10 diagnostic codes for cold weather injuries

TABLE 2. Any cold injury (1 per person per year), by service and component, July 2016–June 2021

TABLE 3a. Counts and incidence rates of cold injuries (1 per type per person per year), active component, U.S. Army, July 2016–June 2021

TABLE 3b. Counts and incidence rates of cold injuries (1 per type per person per year), active component, U.S. Navy, July 2016–June 2021

TABLE 3c . Counts and incidence rates of cold injuries (1 per type per person per year), active component, U.S. Air Force, July 2016–June 2021

TABLE 3d. Counts and incidence rates of cold injuries (1 per type per person per year), active component, U.S. Marine Corps, July 2016–June 2021

You also may be interested in...

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through September, and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing’s syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 12 13 > >> 
Showing results 166 - 180 Page 12 of 13
Refine your search
Last Updated: January 10, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery