Back to Top Skip to main content

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.


WHAT ARE THE NEW FINDINGS?   

In late summer 2016, the U.S. Naval Academy noted an increase in acute respiratory illness and conducted an investigation. Laboratory analysis confirmed adenovirus (HAdV-4) in 19 ill patients, and genetic sequencing confirmed a single strain of HAdV-4. This report provides new evidence of the impact of adenovirus at a federal military service academy.

 

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are administered at enlisted BMT sites. Understanding the impact of HAdV in officer accession/training settings is necessary to inform discussions regarding HAdV vaccine strategy, reduce morbidity of respiratory illness in this population, and positively impact training throughout.

 

BACKGROUND

Human adenoviruses (HAdVs) are non-enveloped double-stranded DNA viruses and are common causes of upper and lower respiratory tract illness.1 The multiple types of adenoviruses are associated with a spectrum of clinical presentations ranging from mild illness to severe disease and pneumonia.1,2 HAdV types 4 (HAdV-4) and 7 (HAdV-7) have been associated with outbreaks of acute respiratory illness (ARI) among new recruits at U.S. enlisted basic military training (BMT) sites since the 1950s.2-6 Because of evidence of multiple HAdV-4 and HAdV-7 outbreaks in enlisted BMT populations, routine vaccination against HAdV-4 and HAdV-7 at enlisted BMT sites was implemented in 1971 and resulted in a 50%–60% reduction in ARI.7

During a period of vaccine non-availability between 1999 and late 2011, rates of HAdV-related illness and hospitalizations increased dramatically at enlisted BMT sites, but rates rapidly declined following reintroduction of the vaccine in late 2011.5,8 The cessation of the HAdV-4 and HAdV-7 vaccination resulted in outbreaks of HAdV associated ARI with attack rates as high as 5%–10% per week.9-15 The HAdV-4 and HAdV-7 vaccine is a live oral vaccine approved for use in military populations 17–50 years of age.16 This vaccine is recommended by the Department of Defense (DoD) for enlisted BMT recruits and is not currently recommended for routine administration in other populations, including federal service academies, such as the U.S. Naval Academy (USNA).17 Occasionally, HAdV outbreaks have been reported in settings other than enlisted BMT sites, including colleges, inpatient and long-term care settings, and communities,18–23 but the extent and frequency of such outbreaks in the U.S. are not well described. Additionally, ARIs have previously been described as a frequent cause of morbidity at the USNA,24-25 and 1 study has implicated HAdV.25

Beginning in late August 2016, staff at the USNA Brigade Medical Clinic (BMC) noted an increase in the number of students presenting with ARI including fever above 100.5°F with pharyngitis. An investigation was performed to further characterize the etiology and magnitude of this ARI outbreak.

METHODS

Population and setting

The USNA is a 4-year coeducational federal service academy in Annapolis, MD. The student body is composed of approximately 4,400 students, with 1,100 students per class year; 25% of students are female. The USNA is both a military and academic training environment with living conditions comparable to civilian undergraduate institutions; all students reside in dormitory-style housing (maximum 4 persons per room), dine and socialize predominantly with members of their company (groups of approximately 150 students comprising students from all 4 class levels), and attend undergraduate courses with classmates of their year group. Students obtain non-emergency medical care at the BMC located within the dormitory facility. Dormitory-style housing at USNA with 2–4 persons per room differs substantially from Navy/Marine Corps BMT sites, where recruits are housed in open bay barracks housing 20 or more persons per room.

First-year students at USNA typically arrive on campus in early July to begin daily military training and strenuous physical conditioning prior to the start of the academic year in late August. Second-to-fourth-year USNA students return to campus in mid-August and host joint activities for all 4 year groups immediately prior to the resumption of the academic year. In 2016, first-year students reported on 1 July, and second-to-fourth-year students returned to campus on 18 August. Aca­demic courses began on 22 August 2016.

 

ARI surveillance

Retrospective BMC medical visit data were obtained from the Military Health Data Repository System (MDR). The MDR is a centralized data repository that captures, archives, validates, integrates, and distributes healthcare data from the DoD worldwide network of over 260 facilities.26 Records of clinical encounters encompassing the final 2 weeks of first-year student military training through the first 5 weeks of the academic term (8 August–25 September 2016) and the equivalent 7-week periods for the 2012–2015 academic years were reviewed to ascertain BMC visit numbers and rates. The combined mean of the 2012–2015 ARI visits and rates were used as the baseline. ARI visits and rates from 2016 were compared to the baseline for the equivalent 7-week period. Both initial visits and follow-up visits were included in the calculation of baseline rates. For the purposes of this investigation, an outbreak was defined as rates or visits for ARI that were more than 1.96 standard deviations above the baseline.  

ARI was defined using a previously published standardized case definition that employed ICD-9 and ICD-10 diagnosis codes (Table 1).8 To better capture the impact of illness on clinical resources, patient visits (rather than affected students) were examined; students could be diagnosed with ARI more than once during the study timeframe. Demographic variables obtained for the 2016 patients included age, sex, company, and class year. For the period from 2012–2015, only data on ARI were accessed. 


Laboratory investigations

All laboratory testing obtained was ordered by treating providers based upon clinical suspicion, recommended diagnostic protocols, and BMC clinic standard operating procedures.23 When performed, nasopharyngeal (NP) swabs were tested for influenza by Sofia Influenza A+B Fluorescent Immunoassay (FIA) (Quidel Corp., San Diego, CA). Oropharyngeal swabs (OP) were tested for Group A streptococci (GAS) by Sofia Strep A FIA (Quidel Corp).  

Submission of clinical specimens for viral culture laboratory testing was based on the clinical suspicion of individual providers because early testing did not indicate that influenza or GAS were likely causative agents. Viral culture laboratory testing was initially performed at Walter Reed National Military Medical Center (WRNMMC) and then HAdV-4 positive specimens were transferred to the U.S. Centers for Disease Control and Prevention (CDC) for serotyping. Providers obtained increased numbers of samples commensurate with the initial increase in ARI cases and then later reduced the frequency of testing of patients after HAdV was identified on 9 September 2016 and was determined to be a likely cause of the increased ARI visits.  

WRNMMC utilized R-Mix shell vial and D3 Ultra DFA Respiratory Virus Screening and ID Kit (Diagnostic HYBRIDS, Inc., Athens, OH) following manufacturer's recommendation with slight modifications. Briefly, specimens were inoculated onto cell monolayer in the R-Mix shell vials and stained for the presence of viral antigens using a pool of monoclonal antibodies directed against influenza A, influenza B, parainfluenza type 1, parainfluenza type 2, parainfluenza type 3, adenovirus, and respiratory syncytial virus. If virus-specific fluorescence was noted by screening, virus identification was performed using individual monoclonal antibodies staining.  

At the CDC, HAdV-4 positive specimens were tested by a generic pan-HAdV real-time polymerase chain reaction (pan-rPCR) assay to confirm HAdV detection and typed by PCR and sequencing of hexon gene hypervariable regions 1-6 (HVR1-6)28 and HAdV type-specific rPCR assays.29 Specimens were also tested at the CDC for other respiratory pathogens by FTD Respiratory Pathogens 21 (FTD-21) real-time reverse transcription PCR (RT-PCR) (Fast-track diagnostics Ltd., Sliema, Malta), which tests for influenza A; influenza A (H1N1) swl; influenza B; rhinovirus; coronavirus NL63, 229E, OC43, HKU1; parainfluenza 1, 2, 3, 4; human metapneumovirus A/B; bocavirus; respiratory syncytial virus A/B; adenovirus; enterovirus; parechovirus; and Mycoplasma pneumoniae. For specimens that tested positive for both rhinovirus and enterovirus by FTD-21 rRT-PCR, RT-PCR and sequencing of partial VP4/VP2 region were performed to distinguish rhinovirus and enterovirus detection.30

CDC selected HAdV-positive specimens with sufficient volume and relatively low cycle threshold values representing patients infected at the beginning, middle, and end of the outbreak for genomic sequencing to identify similarities, and specimens were inoculated into A549 cells. For genomic sequencing, DNA libraries of the isolates were constructed using Nextera XT DNA Library Prep Kit (Illumina Inc., San Diego, CA) and paired-end sequencing was performed on the MiSeq using 500-cycle Miseq Reagent Kit V2 (Illumina Inc.). De novo assemblies were achieved using CLC Genomics Workbench v8.5.1 (CLCbio, Seoul, South Korea). Phylogenetic trees of nearly full genome sequences obtained in this study and selected from GenBank® were constructed using the neighbor-joining method implemented in MEGA7.31,32 In silico restriction enzyme analysis of the HAdV-4 genomes was performed using Geneious v8.1.6 (Biomatters Ltd. Auckland, New Zealand), and genome types were determined using established guidelines and reference fragment patterns.33,34


Case identification and clinical presentation

A confirmed HAdV case was any USNA student evaluated and diagnosed with ARI by clinical staff with symptom onset occurring during 22 August–23 September 2016 and a positive result for HAdV by culture/immunofluorescence assay (IFA) or rPCR of a NP or OP swab. Individual BMC electronic medical records were reviewed for all students who had a NP or OP swab submitted for HAdV testing during 22 August–23 September 2016. In addition, hospital admissions records for all students admitted during 1 August–30 September 2016 were reviewed to account for admissions to medical facilities outside of the BMC. Navy Environmental Preventive Medicine Unit 2 clinical staff reviewed electronic health record data using a standardized questionnaire to obtain patient demographics, date of symptom onset, recent illnesses, symptom presentation, medical history, ill contacts, recent hospitalization, treatment, and radiologic findings. Medical record review and surveillance data were analyzed using Stata software, version 13.0 (Stata­Corp, College Station, TX) and SAS/STAT software, version 9.4 (2014, SAS Institute Inc., Cary, NC). Categorical variables were reported as percentages in each category.


RESULTS

ARI surveillance

During 8 August–23 September 2016, 1,016 outpatient medical visits from 828 unique students (over 20% of the USNA student body) resulted in ARI diagnoses. During 22 August–11 September 2016, 652 outpatient medical visits (representing 547 unique students) resulted in ARI diagnoses, a value more than 3 standard deviations greater than the baseline value. Compared to baseline visits, an excess of 433 student ARI visits occurred during this 3 week period (data not shown). Additionally, the 2016 ARI rate during the same 3-week period was 49 ARI cases per 1,000 students per week, a nearly 3-fold increase compared to the baseline rate (data not shown).  

During the first academic week (22 August–28 August 2016), 79% (131/165) of students presenting with illness were first-year students (data not shown). Overall, 61.8% of all ARI-related visits in week 1 were for students 18 years or younger. During the second academic week (29 August–4 September 2016), the rate of ARI among all students (first-to-fourth-year students) peaked and was more than 3 times the baseline rate (Figure 1). In the third academic week (5 September–11 September 2016), 75.4% (141/187) of all ARI-related visits were among students 19 years or older (data not shown). Rates of ARI were similar between companies. Between 30.5% and 34.4% of the ARI patients who presented to clinic per week were female (data not shown).  


Laboratory investigation

During 22 August–23 September 2016, clinical lab samples from ARI cases included 156 rapid GAS tests (2.6% positive) and 28 rapid influenza tests (0% positive) (data not shown). Lab samples for 33 patients were sent for viral testing, including for HAdV testing. 

HAdV was detected by pan-rPCR in 26 of 46 (56.5%) specimens (NP: 17/33, 51.5%; OP: 9/13, 69.2%) representing 18 of the 33 patients (54.5%). Pan-rPCR detected HAdV from all culture/IFA positive samples (total: n=19 specimens, 16 patients) and from an additional 7 specimens representing 2 additional patients (total: n=26 specimens, 18 patients) who were culture/IFA negative (data not shown). Hexon HVR1–6 sequencing and HAdV-type specific rPCR identified all HAdV positive samples as HAdV-4. Genome sequences (GenBank accession number MG030483-MG030486) obtained from 4 HAdV-4 isolates were identical with each other and showed 94.3% (accession number EF3710058.2) to 99.8% (accession numbers AY599835.1, AY599837.1 and KF006344.1) nucleotide sequence similarity to other representative HAdV-4 genomes available in GenBank. Phylogenetic analysis of all sequences revealed 2 major clades, each comprising genomes exhibiting 4a-like and 4p-like restriction profiles, respectively (Figure 2). USNA sequences clustered within the 4a-like clade. Restriction profiles obtained with the USNA sequences by in silico analysis using enzymes BamHI, DraI, EcoRI, EcoRV, XhoI, and SmaI identified them as genome type 4a1.

Rhinovirus was co-detected from 1 HAdV-4 positive patient and was also detected from 4 HAdV-4 negative patients by FTD-21 rRT-PCR (data not shown). Enterovirus D68 (EV-D68) was also detected from 2 HAdV-4 negative patients by sequencing analysis. No other respiratory pathogens were identified on either rRT-PCR or culture/IFA. Nine patients were negative for all pathogens tested (data not shown).  


Case identification and clinical presentation

Eighteen HAdV-4 positive cases were identified among 33 students seen at the BMC as outpatients who had specimens submitted for viral testing. Among the 33 students with specimens collected, the median number of days from symptom onset to specimen collection was 3.0 (range 1–13 days). Among 27 charts reviewed for students hospitalized from 1 August–30 September 2016, a single additional student was hospitalized for ARI and also tested positive for HAdV by PCR; no typing was performed on the specimen from the hospitalized student.  

Among the 19 laboratory-confirmed cases with symptom information available, the vast majority presented clinically with 1 or more of the following: chills, reported history of fever, symptoms persisting for ≥2 days prior to presentation, sore throat, headache, sinus congestion, and cough (Table 2). Nine of the 19 HAdV positive patients had documented fever (temperature >100.5°F) determined by chart review, with a mean temperature of 102.5°F (range: 101.7–103.0°F) (Table 2). The mean number of days of sick-in-quarters (time excused from all classes and activities) was 2.6 days (range 1–5 days). There were no cases with documentation of chronic underlying illness (including asthma, heart condition, respiratory illness, diabetes, obesity, or use of a prescription medication). Two patients were diagnosed with pneumonia by chest radiograph including the single hospitalized case; chest radiographs were not obtained in 17 of the 19 cases (data not shown). No patient was placed on antivirals empirically for influenza and all patients presented with >95% oxygen saturation on room air (data not shown).  


Control measures

In response to the increase in ARI cases, campus-wide control measures were implemented on 31 August 2016, including 1) hand hygiene and cover-your-cough educational outreach messaging, 2) hand sanitizer station availability throughout campus, 3) strict implementation of mask use for symptomatic patients visiting the clinic, and 4) social distancing measures through sick-in-quarters restrictions for symptomatic individuals.


EDITORIAL COMMENT

This investigation describes a large outbreak of respiratory illness associated with HAdV-4 that occurred among students at the USNA during August–September 2016. Relative to baseline, the outbreak was estimated to have contributed to over 400 excess outpatient clinic visits during this period. The clinical syndrome included high fever, chills, sore throat, headache, and cough, which frequently led to absences from scheduled activities but rarely included pneumonia or resulted in hospitalization. HAdV-4 is an important cause of ARI and conjunctivitis worldwide.35-38 Although HAdV-4 has been infrequently documented to be associated with acute respiratory illness among U.S. civilians,18,39,40 it was the predominant cause of ARI among U.S. enlisted BMT recruits before reintroduction of routine vaccination in late 2011.39,40 

The 2016 outbreak occurred in a residential college-style setting among students from diverse geographic areas who reside in dormitories (2–4 persons per dorm room) and attend mass gatherings. HAdVs are noted to persist in the environment (e.g., in lockers, on bedposts, and on pillow cases) for substantial periods of time41 and to have a high degree of communicability.9 The 2016 outbreak highlights the role of HAdV as a potential cause of ARI among students residing in dormitories in college-like settings. However, it is notable that attendees of federal service academies are exposed to unique physical and military training requirements as compared with civilian undergraduate institutions.  

In enlisted BMT settings, HAdV-4 infection has been linked with severe respiratory illness, with a high impact on loss of training, hospitalized days, and clinical resources.8-14 In this outbreak, cases reported a mean absence of 2.6 days following their initial visit, excluding possible follow-up visits that may have resulted in additional days of absence. Although military enlisted recruits are routinely administered the HAdV-4 and HAdV-7 vaccines, military academy students are not routinely vaccinated with the HAdV vaccine. This outbreak was associated with HAdV-4a, a type for which the existing HAdV vaccine would have potentially offered protection, as vaccination with HAdV-4p is thought to protect against symptomatic infections with HAdV-4a-like viruses.42 

Li and Waddel28 first described finding 2 major genomic clusters of HAdV-4, designated here as 4p-like and 4a-like, based on restriction profile analysis, which were later confirmed and refined by whole genome sequencing.43,44 Whereas HAdV-4p-like genomes were the most prevalent in the U.S. during the late 1960s to early 1980s, HAdV-4a-like genomes came to dominate detections among military populations in later years.29 HAdV-4 strains associated with the 2016 outbreak were identified as HAdV-4a1, with sequences similar to strains circulating among U.S. military enlisted recruits in 2002 (GenBank accession number AY599837.1) and 2003 (GenBank accession number AY599835.1) and in China (GenBank accession number KF006344.1).  

The investigation described here is subject to several limitations. Although HAdV-4 was identified in 18 of 33 patients with available specimens, it was not possible to quantify the proportion of the more than 400 excess ARI clinical encounters potentially associated with HAdV-4, as specimens were only collected based on the clinical suspicion of individual providers. Other respiratory viruses that likely contributed to ARI cases, including rhinovirus and EV-D68, were identified. Moreover, it is not known whether individuals with available specimens differed from individuals presenting with ARI who did not have specimens collected. Finally, risk factors for illness among identified cases were not ascertained and environmental sampling was not feasible during this investigation.

The epidemiology and burden of respiratory illness due to HAdV-4 in residential college settings and federal service academies requires further characterization. These results indicate the need for additional documentation of the impact of HAdV-4 in these settings to inform discussions of parameters for extending vaccine use beyond enlisted BMT settings. Providers and public health practitioners should consider HAdV as a potential contributor to ARI outbreaks, including those in residential campus settings.  

 

Author Affiliations: Navy Environmental and Preventive Medicine Unit TWO (LCDR Rogers, LCDR Johnson); Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (Ms. Lu, Ms. Killerby, Dr. Erdman, Dr. Gerber, Dr. Schneider, Dr. Watson); Naval Health Clinic, Annapolis, MD (Ms. Campbell, CDR Gallus); Walter Reed National Military Medical Center (Dr. Kamau, Ms. Froh); Navy and Marine Corps Public Health Center (Ms. Nowak); Battelle contracting agency to Respiratory Viruses Branch, Centers for Disease Control and Prevention (Dr. Sakthievel) 

Acknowledgments: The authors acknowledge Tammy Servies, MD, MPH (CDR, USN, MC), Christopher Viers (HM1, USN), William Sterling (LT, USN, MSC), and The USNA Brigade Medical Clinic Team led by Cynthia Bryant, MD (CDR, USN, MC) for their support during this investigation.

Disclaimer: The content of this publication is the sole responsibility of the authors and does not necessarily reflect the views or policies of the Department of Defense (DoD), or the Departments of the Army, Navy, or Air Force, or the Centers for Disease Control and Prevention. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

Conflicts of interest: The authors of this manuscript have no conflicts of interest to disclose.

Financial support: There are no additional sources of financial support to disclose.


REFERENCES

1. Baum S. Adenovirus. In: Mendell G, Bennett J, Dolin R. Principles and Practices of Infectious Diseases 8th Edition. New York: Churchill Livingstone; 2014:1787–1793.

2. Foy H. Adenoviruses. In: Evans A, Kaslow R. Viral Infections of Humans: Epidemiology and Control. New York: Plenum Medical Book Company; 1997:119–138.

3. Dudding BA, Top FH, Jr., Winter PE, Buescher EL, Lamson TH, Leibovitz A. Acute respiratory disease in military trainees: The adenovirus surveillance program, 1966–1971. Am J Epidemiol. 1973;97(3):187–198.

4. Hoke CH, Jr., Snyder CE, Jr. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (adenovirus vaccine) in the context of the Department of Defense acquisition system. Vaccine. 2013;31(12):1623–1632.

5. Gray GC, Callahan JD, Hawksworth AW, Fisher CA, Gaydos JC. Respiratory diseases among U.S. military personnel: Countering emerging threats. Emerg Infect Dis. 1999;5(3):379–385.

6. Top FH, Jr., Dudding BA, Russell PK, Buescher EL. Control of respiratory disease in recruits with types 4 and 7 adenovirus vaccines. Am J Epidemiol. 1971;94(2):142–146.

7. Top FH. Control of adenovirus acute respiratory disease in U.S. Army trainees. Yale J Biol Med. 1975;48(3):185-195.

8. O'Donnell FL, Taubman SB. Follow-up analysis of the incidence of acute respiratory infections among enlisted service members during their first year of military service before and after the 2011 resumption of adenovirus vaccination of basic trainees. MSMR. 2015;22(12):2–7.

9. Kolavic-Gray SA, Binn LN, Sanchez JL, et al. Large epidemic of adenovirus type 4 infection among military trainees: Epidemiological, clinical, and laboratory studies. Clin Infect Dis. 2002;35(7):808–818.

10. Hendrix RM, Lindner JL, Benton FR, et al. Large, persistent epidemic of adenovirus type 4-associated acute respiratory disease in U.S. Army trainees. Emerg Infect Dis. 1999;5(6):798–801.

11. Barraza EM, Ludwig SL, Gaydos JC, Brundage JF. Reemergence of adenovirus type 4 acute respiratory disease in military trainees: Report of an outbreak during a lapse in vaccination. J Infect Dis. 1999;179(6):1531–1533.

12. Gray GC, Goswami PR, Malasig MD, et al. Adult adenovirus infections: Loss of orphaned vaccines precipitates military respiratory disease epidemics. For the Adenovirus Surveillance Group. Clin Infect Dis. 2000;31(3):663–670.

13. McNeill KM, Ridgely Benton F, Monteith SC, Tuchscherer MA, Gaydos JC. Epidemic spread of adenovirus type 4-associated acute respiratory disease between U.S. Army installations. Emerg Infect Dis. 2000;6(4):415–419.

14. Ryan MA, Gray GC, Smith B, McKeehan JA, Hawksworth AW, Malasig MD. Large epidemic of respiratory illness due to adenovirus types 7 and 3 in healthy young adults. Clin Infect Dis. 2002;34(5):577–582.

15. Coldren RL, Feighner B, DuVernoy T, Jordan N, Gonzalez R, Alsip B. Adenovirus type 4 outbreak among basic trainees, Ft. Benning, Georgia, April-May 2000. MSMR. 2000;6(6):2–7.

16. Center for Biologics Evaluation and Research. Approved Products—Adenovirus Type 4 and Type 7 Vaccine, Live, Oral. U.S. Food and Drug Administration. https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM247515.pdf. Accessed on 01 April 2017.

17. Immunizations and Chemoprophylaxis for the Prevention of Infectious Diseases: Army Regulation 40–562 BUMEDINST 6230.15B AFI 48–110 IP CG COMDTINST M6230.4G. In: Departments of the Army, the Navy, the Air Force, and the Coast Guard, 2013.

18. Sivan AV, Lee T, Binn LN, Gaydos JC. Adenovirus-associated acute respiratory disease in healthy adolescents and adults: A literature review. Mil Med. 2007;172(11):1198–203.

19. Yang X., Wang Q, Liang B, et al. An outbreak of acute respiratory disease caused by a virus associated RNA II gene mutation strain of human adenovirus 7 in China, 2015. PLoS One. 2017;12(2):e0172519

20. Tsou TP et al. Community outbreak of adenovirus, Taiwan, 2011. Emerg Infect Dis. 2012;18(11):1825–1832.

21. Kajon AE, Lamson DM, Blair CR, et al. Adenovirus type 4 respiratory infections among civilian adults, northeastern United States, 2011–2015. Emerg Infect Dis. 2018;24(2):201-209. 

22. Scott MK, Chommanard C, Lu X, et al. Human adenovirus associated with severe respiratory infection, Oregon, USA, 2013–2014. Emerg Infect Dis. 2016;22:1044.

23. Kandel R, Srinivasan A, D'Agata EM, Lu X, Erdman D, Jhung M. Outbreak of adenovirus type 4 infection in a long-term care facility for the elderly. Infect Control Hosp Epidemiol. 2010;31(7):755–757.

24. Blakenship, TL, Gackstetter GD, Gray, GC. History of respiratory illness at the U.S. Naval Academy. Mil Med. 2001;166(7):581–586. 

25. Gray GC, Schultz RG, Gackstetter GD, et al. Prospective study of respiratory infections at the U.S. Naval Academy. Mil Med. 2001;166(9):759–763.

26. Defense Health Agency. Military Health System Data Repository (MDR). 2013. Available at: https://health.mil/Military-Health-Topics/Technology/Clinical-Support/Military-Health-System-Data-Repository. Accessed on 13 July, 2017.

27. Pelucchi C, Grigoryan L, Galeone C, et al. Guideline for the management of acute sore throat. Clin Microbiol Infect. 2012;18 Suppl 1:1–28.

28. Lu X, Erdman DD. Molecular typing of human adenoviruses by PCR and sequencing of a partial region of the hexon gene. Arch Virol. 2006;151(8):1587–1602.

29. Lu X, Trujillo-Lopez E, Lott L, Erdman DD. Quantitative real-time PCR assay panel for detection and type-specific identification of epidemic respiratory human adenoviruses. J Clin Microbiol. 2013;51(4):1089–1093.

30. Lu X, Schneider E, Jain S, et al. Rhinovirus viremia in patients hospitalized with community acquired pneumonia. J Infect Dis. 2017;216(9):1104–1111.

31. Benson DA, Cavanaugh M, Karsch-Misrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2017;45(D1):D37-D42.

32. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874.

33. Li QG, Wadell G. The degree of genetic variability among adenovirus type 4 strains isolated from man and chimpanzee. Arch Virol. 1988;101(1-2):65–77.

34. Kajon AE, Moseley JM, Metzgar D, et al. Molecular epidemiology of adenovirus type 4 infections in U.S. military recruits in the postvaccination era (1997–2003). J Infect Dis. 2007;196(1):67–75.

35. Chen HL, Chiou SS, Hsiao HP, et al. Respiratory adenoviral infections in children: A study of hospitalized cases in Southern Taiwan in 2001–2002. J Trop Pediatr. 2004;50(5):279–284.

36. Ariga T, Shimada Y, Ohgami K, et al. New genome type of adenovirus serotype 4 caused nosocomial infections associated with epidemic conjunctivitis in Japan. J Clin Microbiol. 2004;42(8):3644–3648.

37. Schepetiuk SK, Norton R, Kok T, Irving LG. Outbreak of adenovirus type 4 conjunctivitis in South Australia. J Med Virol. 1993;41(4):316–318.

38. Cooper RJ, Bailey AS, Killough R, Richmond SJ. Genome analysis of adenovirus 4 isolated over a six year period. J Med Virol. 1993;39(1):62–66.

39. Hierholzer JC. Adenoviruses. In: Lennette EH, Lennette DA, Lennette ET. Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections, 7th ed Washington DC: American Public Health Association, 1995:169–188.

40. Radin JM, Hawksworth AW, Blair PJ, et al. Dramatic decline of respiratory illness among US military recruits after the renewed use of adenovirus vaccines. Clin Infect Dis. 2014;59(7):962–968.

41. Russell KL, Broderick MP, Franklin SE, et al. Transmission dynamics and prospective environmental sampling of adenovirus in a military recruit setting. J Infect Dis. 2006;194(7):77–85.

42. Kuschner RA, Russell KL, Abuja M, et al. A phase 3, randomized, double-blind, placebo-controlled study of the safety and efficacy of the live, oral adenovirus type 4 and type 7 vaccine, in U.S. military recruits. Vaccine. 2013;31(28):2963–2971.

43. Hang J, Vento TJ, Norby EA, et al. Adenovirus type 4 respiratory infections with a concurrent outbreak of coxsackievirus A21 among United States Army Basic Trainees, a retrospective viral etiology study using next-generation sequencing. J Med Virol. 2017;89(8):1387–1394.

44. Dehghan S, Seto J, Liu EB, et al. Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events. Virology. 2013;443(2):197–207.

Diagnoses of acute respiratory illness (ARI), August–September 2016, U.S. Naval Academy
Neighbor-joining tree of HAdV-4 full genome sequences obtained from the U.S. Naval Academya outbreak and representative genome

ICD-9 and ICD-10 diagnosis codes for each of the 3 categories of acute respiratory illness (ARI)a

Characteristics of laboratory confirmed HAdV positive cases (n=19), U.S. Naval Academy, August 29–September 23, 2016

You also may be interested in...

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Winter Safety | Preventive Health | Health Readiness

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection | Armed Forces Health Surveillance Branch

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Epidemiology and Analysis

Cold injuries among active duty U.S. service members drop to lowest level since winter 2011–2012

Article
1/23/2017
U.S. service members often perform duties in cold weather climates where they may be exposed to frigid conditions and possible injury.

Cold injuries among active duty U.S. service members drop to the lowest level since winter 2011-2012, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Winter Safety
<< < ... 6 7 8 > >> 
Showing results 106 - 118 Page 8 of 8

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.