Back to Top Skip to main content Skip to sub-navigation

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image. Marines carry a wooden log for physical fitness.

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.


WHAT ARE THE NEW FINDINGS?    

In 2017, the prevalence of TRT use among active component service men was 4.7 per 1,000. Using the 2018 AUA clinical practice guidelines, only 44.5% of those receiving TRT had an indication to be on the medication.

 

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Out of every 1,000 male service members, almost 3 are inappropriately receiving TRT. Those being inappropriately treated may experience adverse effects of the medication, including obstructive sleep apnea, worsening of urinary tract symptoms, and edema. These adverse effects have the potential to impact deployability and medical readiness.

 

BACKGROUND

Testosterone deficiency, also known as hypogonadism or testicular hypofunction, is a combined biochemical and clinical syndrome in adult males characterized by low levels of circulating total testosterone that may adversely affect multiple organ systems and quality of life.1 In healthy men aged 18–50 years, total serum testosterone levels range from 300 ng/dl to 1000 ng/dl.2 These levels start to fall significantly after 50 years of age.2 The Baltimore Longitudinal Study of Aging found that 12% of men in their 50s and 50% of men in their 80s had total serum testosterone levels below 325 ng/dl.3 The average drop in testosterone is estimated at 3 ng/dl per year for men in their 50s and 11 ng/dl per year for men in their 80s.1 When hypogonadism is defined as a total serum testosterone level less than 300 ng/dl combined with symptomatic clinical criteria, the estimated prevalence of testosterone deficiency in the U.S. ranges from 5.6% to 6.5%.4 

The American Urological Association (AUA) 2018 guidelines for the evaluation and management of testosterone deficiency recommend that clinicians use a total serum testosterone level below 300 ng/dl as a reasonable cutoff in support of the diagnosis of low testosterone.5 An additional recommendation was that the laboratory diagnosis of low testosterone should be made only after 2 total testosterone level measurements below 300 ng/dl on serum specimens taken on separate occa­sions.5 Finally, the AUA recommendation for a clinical diagnosis of testosterone deficiency is at least 1 total testosterone level below 300 ng/dl in addition to appropri­ate physical, cognitive, and/or sexual signs and symptoms.5,6 These clinical signs and symptoms include fatigue, reduced energy, reduced endurance, diminished physical performance, loss of body hair, reduced lean muscle mass, obesity, depressive symptoms, cognitive dysfunction, reduced motivation, poor concentration, poor memory, irritability, reduced sex drive, and reduced erectile function.2,5 

Testosterone level testing and testosterone replacement therapy (TRT) prescriptions have tripled in recent years, and the estimated prevalence of TRT use among men in the U.S. is 0.9–2.9%.4,5 However, some men are prescribed TRT without an indication.5 The AUA estimates that up to 25% of men who eventually receive TRT do not have their testosterone levels checked prior to initiation of therapy. Furthermore, it is estimated that approximately 30% of men who are placed on TRT have no indication for the medication.5,7 The U.S. Department of Veterans Affairs (VA) also reported a marked increase in the number of veterans who requested TRT for low testosterone levels.8 As of 2015, more than 85,000 veterans had received TRT through the VA.9 Many of these veterans insisted that their symptoms were due to “low T,” despite having laboratory results indicating normal serum total testosterone levels.9 In the Military Health System (MHS), there also have been significant increases in the numbers of both TRT and testicular hypofunction diagnoses. From 2007–2011, males aged 25–44 years received androgen prescriptions at rates that increased 30% per year. During this same period, rates of medically coded hypogonadism increased over 40% per year.10 

There are significant side effects and risks associated with TRT. TRT has been associated with an increased risk of adverse cardiovascular, respiratory, and dermatologic events among older men.11 There is inconsistent evidence about the effects of TRT in a military age population (17–60 years). Several studies noted adverse effects of TRT in younger populations including topical transference, erythrocytosis, interference with fertility, worsening of severe lower urinary tract symptoms, suppression of spermatogenesis, fluid retention and edema, and obstructive sleep apnea (OSA).5,6 One recent study noted an increased risk of OSA but no increased risk of cardiovascular or thromboembolic events.12 With the increasing number of testosterone deficiency diagnoses and potential health risks associated with initi­ation of TRT, it is important to understand the epidemiology of receipt of TRT by U.S. service men and whether these individuals have an indication for receiving treatment. Previous studies of U.S. service men highlighted the need to connect individual prescriptions with a patient's androgen level in order to evaluate the appropriateness of prescribed TRT.10


METHODS

Data were obtained from the Defense Medical Surveillance System (DMSS), which contains records of ambulatory encounters and hospitalizations of active component service members of the U.S. Armed Forces in military and civilian (if reimbursed through the MHS) treatment facilities. The DMSS also contains administrative records for prescriptions dispensed to service members at military treatment facilities (MTFs) or through civilian Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care. In addition, laboratory data were obtained from the Navy and Marine Corps Public Health Center (NMCPHC), which include data from the Health Level 7 (HL7) database generated within the Composite Health Care System (CHCS) at fixed MTFs. Laboratory testing performed in civilian facilities is not captured in the HL7 database.

The prevalence of TRT utilization during 2017 was defined as the number of service men who had a dispensed prescription in 2017 with a therapeutic class code for androgens (excluding Danazol), among all male active component service members in the Army, Navy, Air Force, or Marine Corps in service during June 2017. Frequency and distribution of the dispensed androgen prescriptions were identified for each service man (Table 1). Covariates included service, age, military rank, race/ethnicity, military occupation, and marital status. Adjusted prevalence estimates were calculated using log binomial regression. All analyses were performed using SAS/STAT® software, version 9.4 (2014, SAS Institute, Cary, NC).

Laboratory tests and medical encounter history were examined for evidence of an indication for TRT among service men with a TRT prescription in 2017. NMCPHC was provided a line listing of service men who received a TRT prescription in 2017. NMCPHC then returned a line listing of those service men with total serum testosterone test results below 300 ng/dl. Total serum testosterone tests conducted prior to the last TRT prescription in 2017 were considered. Laboratory testing data were available for the period from May 2004 through 2017 for Navy service men and July 2006 through 2017 for all other service men. Electronic health records of service men with a TRT prescription in 2017 were also examined for a history of a qualifying diagnosis as indicated by any of the ICD-9 or ICD-10 codes presented in Table 2. These codes were identified after review of the relevant literature and current clinical practice guidelines from the Endocrine Society and the AUA.1,2,5,6 Service men were defined as having a prior indication for TRT if they met the AUA recommendations for 1) laboratory diagnosis (i.e., 2 total testosterone measurements less than 300 ng/dl) and/or 2) clinical diagnosis (i.e., at least 1 total testosterone measurement less than 300 ng/dl and at least 1 qualifying ICD-9 or ICD-10 diagnosis code).5 


RESULTS

During the 1-year surveillance period, a total of 5,093 active component service men had a filled prescription for TRT, yielding a crude period prevalence of 4.7 per 1,000 male service members (Table 3). Army service men had a higher prevalence of TRT use compared to men in the other service branches (6.3 per 1,000). Warrant officers (14.5 per 1,000) and senior officers (13.1 per 1,000) had a higher prevalence of TRT use compared to enlisted personnel (senior enlisted, 7.7 per 1,000; junior enlisted, 0.5 per 1,000) and junior officers (3.8 per 1,000). In addition, TRT use increased approximately linearly with increasing age as seen in Table 3. Non-Hispanic whites and American Indian/Alaska Native service men had the highest prevalence (5.6 per 1,000) compared to service men in other race/ethnicity groups, while non-Hispanic blacks (2.9 per 1,000) and Asian/Pacific Islanders (2.6 per 1,000) had the lowest. Healthcare workers had the highest prevalence (9.8 per 1,000) compared to those in other occupations, while motor transport workers had the lowest (2.2 per 1,000). Finally, service members who were never married had a TRT prevalence of 0.7 per 1,000, while married service men and those with “other/unknown” marital status had a prevalence of 7.5 and 8.1 per 1,000, respectively.

After adjusting for all covariates (Table 3), the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indian/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. 

Among the 5,093 active component male service members who received TRT in 2017, 25.6% met the laboratory diagnosis criterion of having at least 2 total testosterone measurements that were less than 300 ng/dl. In addition, 44.3% of the service men who received TRT met the clinical diagnosis criteria of having at least 1 total testosterone measurement less than 300 ng/dl and documentation of at least 1 qualifying diagnosis code. Nearly all (99%) of the service men who met the laboratory diagnosis criterion also met the clinical diagnosis criteria. Overall, 44.5% of those who received TRT met the case definition for an indication for TRT (Table 4). Nearly 2 out of every 3 service men in the Navy (65.4%) and service men aged 17–29 years (64.1%) who received TRT did so without an indication for TRT.


EDITORIAL COMMENT

The crude prevalence of TRT of 4.7 per 1,000 service men, or 0.5%, is well below the general U.S population estimate of 0.9–2.9%.1 This is expected since the U.S. Department of Defense (DoD) active component population is younger on average than the general population, is screened for pre-existing conditions prior to accession into the military, and includes few individuals over 60 years of age. In addition, there is a pronounced gradient of increasing prevalence of TRT use with increas­ing age. This pattern is consistent with the published literature on the civilian population and the known biological process of aging.2 

Before and after adjustment, there were pronounced differences in the prevalence of TRT use between some occupations. The increased prevalence of TRT use among healthcare workers may be related to medical knowledge, access to care, and/or availability of treatment. The higher prevalence observed among those in combat arms occupations could be related to the nature of their work and the associated clinical symptoms. These warfighters are chronically sleep deprived, and that can manifest as depression, fatigue, and irritability.13 In contrast, pilots and aircrew are anecdotally known for their refusal to seek care, even to the point of concealing illness and injuries, in order to maintain their flight status. Hypogonadism diagnoses result in pilots and aircrew losing their flight status14; they then must go through the medical waiver process to regain their certifications.14 This is a potential explanation for why the prevalence of TRT use in pilots and aircrew is much lower than among service men in other occupational groups. Even after adjustment, there remains an association between TRT and marital status. Compared to single service men, married service men may be more likely to seek care related to difficulties with conceiving a child or because of spousal encouragement to seek care for other comorbid conditions associated with hypogonadism.

Overall, 44.5% of those active component men who received TRT had an indication for receiving treatment when following the 2018 AUA clinical practice guidelines for the management of testosterone deficiency. The finding of 44.5% is substantially less than the AUA’s estimation for 70% in the civilian population; however, this could be related to differences in the age distributions of the study populations. The AUA estimation was derived from a 2015 study that used the North Shore University Health System Data Warehouse. However, the average age of the study population was 56 years.7 In contrast, in the current study, over 90% of the service men on TRT in 2017 were under the age of 50. Older men are more likely to have an indication for TRT because of a higher prevalence of hypogonadism.

This study was limited to active component service men, so comparisons with studies of the civilian population should be regarded with caution given the differences between the 2 populations in terms of age and health status. Furthermore, the data captured in this report may not represent service men’s true medical histories, as some members may have been evaluated by non-network civilian providers and pos­sibly paid the costs for this medical care out-of-pocket or through private health insurance. Diagnostic records, laboratory data, and prescription data associated with such non-network health care would not have been included in the current analysis. In addition, subjective signs and symptoms derived from questionnaires have been shown to have poor sensitivity whereas the clinical diagnosis criteria used in the current analysis were based upon a consolidation of definitions of hypogonadism reported in the published literature.1,2,5,6 Finally, in some general population studies, treatment for hypogonadism was based upon other criteria. The 2018 AUA guidelines were released after the surveillance period. Prior to the release of these guidelines, there were no commonly accepted standards for diagnosing hypogonadism.

During 2017, approximately 1 out of every 200 service men (0.47%) was treated with TRT. While this is a smaller percentage than that observed in the civilian population, it still represents a fairly large number of service men. Primary care providers in the MHS should be aware of the prevalence of TRT use in order to properly assess patients presenting with comorbid conditions. Furthermore, those providers who are considering initiating TRT should be aware of the 2018 AUA guidelines in order to reduce the frequency of TRT prescriptions that lack valid indications. The DoD might consider limiting initiation of TRT to those providers with appropriate board certification or other specialized training in order to limit the frequency of inappro­priate TRT prescriptions. Such a limitation could lessen the frequency of inappropriate prescriptions of long-term medications by physicians who have not yet completed residency training. Finally, future studies are recommended to examine whether the new clinical practice guidelines are improving the percentage of those receiving TRT who actually have an indication for treatment.


Author affiliations: Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD (LCDR Larsen); Armed Forces Health Surveillance Branch, Silver Spring, MD (CDR Clausen, Dr. Stahlman)


Acknowledgments: The authors thank the Navy Marine Corps Public Health Center, Portsmouth, VA, for providing laboratory data.


Disclaimer: The contents, views, or opinions expressed in this publication or presentation are those of the author(s) and do not necessarily reflect the official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense (DoD), or the Departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.


REFERENCES

1. Lunenfeld B, Mskhalaya G, Zitzmann M, et al. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. Aging Male. 2015;18(1):5–15.

2. Seftel AD. Male hypogonadism. Part I: Epidemiology of hypogonadism. Int J Impot Res. 2006;18(2):115–120.

3. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–731.

4. Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4-5):395–402.

5. Mulhall JP, Trost LW, Brannigan RE, et al. Evaluation and management of testosterone deficiency: AUA Guideline. J Urol. 2018;200(2):423–432.

6. Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society Clinical Practice Guideline. Journal Clin Endocrinol Metab. 2018;103(5):1715–1744.

7. Malik RD, Wang CE, Lapin B, Lakeman JC, Helfand BT. Characteristics of men undergoing testosterone replacement therapy and adherence to follow-up recommendations in metropolitan multicenter health care system. Urol. 2015;85(6):1382–1388.

8. Walsh TJ, Shores MM, Fox AE, et al. Recent trends in testosterone testing, low testosterone levels, and testosterone treatment among Veterans. Androl. 2015;3(2):287–292.

9. Boyle AM. VA educates patients about who really needs testosterone therapy. U.S. Medicine. 31 March 2015. http://www.usmedicine.com/agencies/department-of-veterans-affairs/va-educates-patients-about-who-really-needs-testosterone-therapy/. Accessed 27 February 2019.

10. Canup R, Bogenberger K, Attipoe S, et al. Trends in androgen prescriptions from military treatment facilities: 2007 to 2011. Mil Med. 2015;180(7):728–731.

11. Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. NEJM. 2010;363(2):109–122.

12. Cole AP, Hanske J, Jiang W, et al. Impact of testosterone replacement therapy on thromboembolism, heart disease and obstructive sleep apnoea in men. BJU Int. 2018;121(5):811–818.

13. Naval Medical Aerospace Institute. U.S. Navy Aeromedical Reference and Waiver Guide. https://www.med.navy.mil/sites/nmotc/nami/arwg/pages/aeromedicalreferenceandwaiverguide.aspx. Published 27 November 2018. Accessed 27 February 2019.

14. Department of Defense, Office of the Deputy Assistant Secretary of Defense for Military Community and Family Policy (ODASD (MC&FP)). 2015 demographics: profile of the military community. http://download.militaryonesource.mil/12038/MOS/Reports/2015-Demographics-Report.pdf. Accessed 27 February 2019.

Frequency and distribution of androgen prescriptions dispensed to 5,093 active component males on TRT in 2017, by drug name
ICD-9 and ICD-10 codes for TRT indication
Crude and adjusted prevalence, by demographic and military characteristics, active component males who received TRT in 2017

Percent of active component males who received TRT in 2017 who met criteria for laboratory diagnosis, clinical diagnosis, and indication for TRT (N=5,093)


You also may be interested in...

Morbidity Burdens Attributable to Various Illnesses and Injuries

Infographic
5/23/2018
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Infographic
5/23/2018
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens, Attributable to Various Illnesses and Injuries, 2017

Infographic
5/23/2018
Absolute and Relative Morbidity Burdens, Attributable to Various Illnesses and Injuries, 2017

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report

Hospitalizations, Active Component, U.S. Armed Forces, 2017

Infographic
5/23/2018
This report documents the frequencies, rates, trends, and distributions of hospitalizations of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during calendar year 2017.

This report documents the frequencies, rates, trends, and distributions of hospitalizations of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during calendar year 2017.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Heat Illness

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

There were a total of 2,163 incident cases of heat illness among active component service members, including 464 cases of heat stroke and 1,699 cases of heat exhaustion.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Rhabdomyolysis

Infographic
4/13/2018
Rhabdomyolysis

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Hyponatremia

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Cardiovascular Diseases

Infographic
4/4/2018
At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Mental Health Problems

Infographic
4/4/2018
This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus | Bug-Borne Illnesses

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report | Bug-Borne Illnesses

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report
<< < ... 11 12 13 14 > >> 
Showing results 181 - 195 Page 13 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.