Back to Top Skip to main content Skip to sub-navigation

Incidence and Temporal Presentation of Visual Dysfunction Following Diagnosis of Traumatic Brain Injury, Active Component, U.S. Armed Forces, 2006–2017

SAN DIEGO (April 6, 2017) Cmdr. John Cason, program director Navy Refractive Surgery, performs the second Small Incision Lenticular Extraction (SMILE) procedure at Naval Medical Center San Diego. The SMILE procedure is the latest advancement in refractive surgery for correcting myopia or nearsightedness. (U.S. Navy photo by Mass Communication Specialist 1st Class Elizabeth Merriam/Released) SAN DIEGO (April 6, 2017) Cmdr. John Cason, program director Navy Refractive Surgery, performs the second Small Incision Lenticular Extraction (SMILE) procedure at Naval Medical Center San Diego. The SMILE procedure is the latest advancement in refractive surgery for correcting myopia or nearsightedness. (U.S. Navy photo by Mass Communication Specialist 1st Class Elizabeth Merriam/Released)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

This analysis describes the incidence of visual dysfunctions following a diagnosis of traumatic brain injury (TBI) among active component service members. The visual dysfunctions were divided into 9 major categories. A comparison group of service members with no history of TBI was used to determine relative incidence rates. The most commonly diagnosed visual dysfunctions were subjective visual disturbances, convergence insufficiency (CI), visual field loss, and accommodative dysfunction (AD). Service members with mild or moderate/severe TBI had significantly higher incidences of AD and CI compared to service members with no TBI. Results of survival analysis showed that service members with mild or moderate/severe TBI had lower probabilities of remaining without the visual dysfunction outcome at almost every week of follow-up in the first year after TBI diagnosis compared to those with no TBI. The findings of this report suggest opportunities to improve both documentation and access to care for service members with these conditions.

WHAT ARE THE NEW FINDINGS?    

This is the first MSMR report to describe visual dysfunctions following TBI among active component service members. These dysfunctions were found across all levels of TBI severity, with similar incidence among males and females. Many categories of dysfunction had a higher likelihood of diagnosis among the moderate/severe TBI group during the first year following TBI diagnosis.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Visual dysfunctions following TBI diagnosis can affect functioning in many areas and may be persistent. Service members should be evaluated for visual dysfunction following diagnosis of TBI. Incidence rates of certain dysfunctions, such as AD and CI, are significantly higher after TBI and should prompt providers to evaluate for a previously undiagnosed TBI.

BACKGROUND

Traumatic brain injury (TBI) is common in military service because of both deployment and non-deployment causes, including blast injuries, motor vehicle accidents, falls, and combative actions. Since 2000, there have been over 380,000 TBIs reported by the Defense and Veterans Brain Injury Center.1 While the majority of these TBIs were classified as mild, it is well known that even mild TBI can lead to challenges in multiple areas of functioning and can cause physical (e.g., headaches, sleep disturbances, and balance problems), cognitive (e.g., concentration and attention problems), and emotional (e.g., irritability, anxiety, and depression) difficulties. These effects vary depending upon the severity of the injury. Recovery times may be different for each person and situation.2

The external force that causes TBI can also cause dysfunction in the visual system. The mechanisms of a brain injury can range from overpressure from a blast wave to brain displacement (e.g., coup–contrecoup injury); trauma secondary to direct, blunt, or penetrating injury to the brain; or a combination of the above. Military personnel are at a heightened risk for such trauma because of combat and military training activities as well as potential exposure to powerful blast explosions. TBI effects can negatively affect the ability to receive, process, and react to visual stimuli. Visual dysfunction is one of the most common concerns reported after TBI and includes a wide range of symptoms. These symptoms can include blurred and/or double vision, difficulties reading, light sensitivity (photophobia), and decreased peripheral vision.3 Symptoms are often the result of oculomotor dysfunctions, such as accommodative dysfunction (AD), convergence insufficiency (CI), and also visual field loss (VFL), which have been reported at higher prevalence rates for patients with TBI.4 AD is a group of disorders affecting the ability to adjust focus from distance to near tasks, such as reading. It can include difficulties with the initiation, magnitude, and sustainment of near focus effort.5 CI is a condition where the eyes cannot be brought together in unison on a near target, often leading to visual suppression of 1 eye and/or double vision when performing near visual tasks. AD and CI can be present concurrently in the same patient, with variable contributions to overall symptoms of blurred vision, difficulty reading, irritability, intermittent diplopia, poor concentration, and headaches associated with near work.6,7 Individuals can continue to experience these symptoms of visual dysfunction for years after recovery from other TBI symptoms.8

Because of the importance of vision to human activity, dysfunctions of the visual system associated with TBI can interfere with the overall rehabilitation and reintegration of the individual. Even with the increasing body of knowledge concerning these dysfunctions, screening for such conditions is not consistent, considering that as many as 79% of TBI patients report subjective visual complaints.9 Moreover, a recent study estimated significant costs associated with TBI-related visual dysfunction.10

The objective of this report is to characterize the magnitudes and trends of multiple categories of visual dysfunctions among active component service members diagnosed with TBI as well as the development of these dysfunctions after the initial TBI diagnosis. This information will provide valuable input into screening recommendations for visual dysfunction after TBI. Additionally, these baseline data will inform ongoing evaluation of interventions for visual dysfunction after TBI.

METHODS

Data were obtained from the Defense Medical Surveillance System (DMSS), a longitudinal administrative data warehouse that contains electronic medical records of hospitalization and ambulatory medical encounters in military medical treatment facilities, civilian facilities (if care was reimbursed through the Military Health System), and in the deployed setting if documented in the Theater Medical Data Store. Data are limited to recorded diagnostic codes and demographic variables. No clinical data are available for further validation of the chosen case definitions.

Incident cases of TBI diagnosed between 2006 and 2017 among active component service members in the Army, Navy, Air Force, or Marine Corps were identified from DMSS records using the standard Armed Forces Health Surveillance Branch case definition.11 The case definition required at least 1 inpatient, outpatient, or in-theater medical encounter with a diagnosis of TBI in any diagnostic position.11 Severity of TBI was classified as mild or moderate/severe using International Classification of Diseases (ICD), 9th and 10th Revision, diagnostic codes.11 An individual could be counted as a case of TBI only once per lifetime, and the earliest qualifying medical encounter was considered the incidence date. TBI cases were excluded if they had a diagnosis for any type of ocular trauma at any time during their military service that was recorded in any diagnostic position of an inpatient, outpatient, or in-theater medical encounter (Table 1). In addition, TBI cases were excluded if they had a diagnosis for any visual dysfunction that was recorded in any diagnostic position of an inpatient, outpatient, or in-theater medical encounter before the TBI incidence date (Table 2). The categories of visual dysfunction were based on the results of a meta-analysis of several visual dysfunctions.4

Each TBI case was matched to another active component service member (control) who was in service at the time of the case’s TBI diagnosis and who had never been diagnosed with TBI or ocular trauma during their military service. Individuals were matched on age (within +/- 1 year) and sex. The TBI incidence date was considered the reference date for each matched pair. Controls were excluded if they had a diagnosis for any visual dysfunction in any diagnostic position of an inpatient, outpatient, or in-theater medical encounter before the reference date. Cases and controls were followed up to 1 year after the reference date to determine incidence of visual dysfunction. Follow-up time was censored at the time of incident visual dysfunction diagnosis, when a service member left active component military service, or at the end of 1 year, whichever came first. In addition, individuals were followed up separately for each type of visual dysfunction. For example, time at risk for AD was censored at the time of incident AD diagnosis; however, time at risk would continue to accrue for other outcomes such as CI. As such, individuals could be counted multiple times for different outcomes.

To qualify as a case of visual dysfunction, an individual was required to have at least 2 inpatient, outpatient, or in-theater medical encounters within 1 year. The diagnosis could be documented in any diagnostic position and had to be for the same visual dysfunction type in both encounters. The relative risk for each visual dysfunction was calculated by comparing the incidence of visual dysfunction among those with no history of TBI to the incidence among those with incident mild or moderate/severe TBI. Multivariable Poisson regression models were used to calculate adjusted incidence rate ratios for the TBI cohorts, controlling for age, sex, race/ethnicity group, service branch, rank, military occupation, and history of deployment before the reference date. Because of the large sample size, p values less than .01 were considered statistically significant. As a secondary analysis, the time to first visual dysfunction encounter was plotted for each of the TBI cohorts.

RESULTS

A search of DMSS records between 2006 and 2017 identified 171,868 cases of mild TBI and 18,237 cases of moderate/severe TBI. These cases were matched to 190,105 controls (Table 3). Of note, there was 1 female TBI case born in the 1940s who could not be matched to a control and was subsequently dropped from the analysis. Most incident TBI cases occurred among men, non-Hispanic whites, Army members, those less than 25 years of age, junior enlisted service members, and those who had ever deployed (Table 3).

The most commonly diagnosed visual dysfunction was subjective visual disturbances (n=2,104; 87.0 per 10,000 person-years [p-yrs]), followed by CI, VFL, AD, binocular vision disorders, blindness and low vision, nystagmus, strabismus disorders, and disorders of pupil function (n=228; 9.4 per 10,000 p-yrs) (Table 4). For AD and CI, overall incidence rates were highest among the moderate/severe TBI cohort and lowest in the no TBI cohort. For subjective visual disturbances, nystagmus, binocular vision disorders, and strabismus disorders, incidences were highest in the moderate/severe TBI cohort and similar among those in the mild TBI and no TBI cohorts. Overall rates of VFL were highest in the moderate/severe TBI cohort and lowest in the mild TBI cohort. However, for blindness and low vision and disorders of pupil function, incidences were highest in the no TBI cohort and lowest in the mild TBI cohort.

Among the 3 cohorts (mild TBI, moderate/severe TBI, and no TBI), overall incidence rates of visual dysfunction were higher in males compared to females for CI, nystagmus, and binocular vision disorders. Rates of other visual dysfunctions were similar among males and females except for strabismus disorders, for which the rate was higher in females compared to males. Overall incidence rates of AD, VFL, and pupil function disorders were higher among non-Hispanic white service members compared to those in other race/ethnicity groups; however, rates of CI and subjective visual disturbances were higher in non-Hispanic black service members. The overall incidence rates of other visual dysfunctions were similarly distributed among the race/ethnic groups. Generally, for all types of visual dysfunctions, incidence increased with increasing age.

Overall incidence rates of AD, CI, subjective visual disturbances, nystagmus, and strabismus disorders were higher among service members in the Army compared to those in other service branches. Rates of binocular vision disorders and blindness and low vision were highest among Air Force members, rates of pupil function disorders were higher among those in the Navy, and rates of blindness and low vision were highest among those in the Marine Corps and Army. In general, incidence rates of visual dysfunctions were higher among the senior officer and enlisted ranks compared to the junior officer and enlisted ranks. Overall rates of AD, CI, and subjective visual disturbances were highest among service members in combat-specific occupations. In contrast, rates of all other visual dysfunctions were highest among those in pilot/air crew occupations. Except for strabismus disorders, overall incidence rates of visual dysfunctions were higher among those who had previously deployed compared to those who had not. Rates of strabismus disorders were similar among those with and without previous deployment.

After adjusting for age, sex, service branch, rank, military occupation, and history of deployment, service members with mild or moderate/severe TBI had significantly higher overall rates of AD (adjusted incidence rate [AIR]=3.58 and AIR=4.68, respectively) and CI (AIR=3.98 and AIR=5.64, respectively) compared to service members with no TBI (Table 5). The AIRs of VFL, subjective visual disturbances, nystagmus, and binocular vision disorders were significantly lower among service members with mild TBI compared to those with no TBI; however, there were no significant differences in the AIRs of each of these visual dysfunctions among those with moderate/severe TBI compared to those with no TBI. The AIRs for blindness and low vision and disorders of pupil function were significantly lower in both the mild and moderate/severe TBI cohorts compared to the no TBI cohort. There were no statistically significant differences in the AIR of strabismus disorders among the TBI cohorts.

The survival curves (secondary analysis) show the proportion of individuals without incident diagnoses of visual dysfunction by week. These curves varied by TBI cohort and by visual dysfunction outcome (Figures 1–9). For AD, CI, and subjective visual disturbances, service members with mild or moderate/severe TBI were more likely to receive the visual dysfunction diagnosis at almost every week of follow-up compared to those in the no TBI cohort (Figures 1, 2, 4). For VFL, nystagmus, binocular vision dysfunction, and strabismus disorders, service members in the moderate/severe TBI cohort were more likely to receive the visual dysfunction diagnosis during almost every week of follow-up compared to those in the mild and no TBI cohorts; however, those with mild TBI were less likely to be diagnosed with the visual dysfunction during the earlier weeks of follow-up compared to those with no TBI (Figures 3, 6, 8, 9). For blindness and low vision, the moderate/severe TBI cohort had consistently higher percentages of blindness and low vision diagnoses compared to the other 2 cohorts during weeks 15–52 (Figure 5). For pupil dysfunction, the proportions of individuals without incident diagnoses were consistent during the entire 1-year follow-up period (Figure 7). In the later weeks of follow-up, the mild TBI patients became more likely to be diagnosed with VFL, nystagmus, binocular vision problems, and strabismus disorders than the no TBI group. Finally, higher percentages of the mild TBI cohort remained without blindness and low vision or disorders of pupil function at each week of follow-up compared to the other 2 cohorts (Figures 5, 7).

EDITORIAL COMMENT

This report demonstrated that service members with mild or moderate/severe TBI have significantly higher AIRs of AD and CI compared to service members with no TBI. AIRs of these conditions were highest among those with moderate/severe TBI.4 This finding is consistent with a recently published meta-analysis on the prevalence of several visual dysfunctions after TBI. The meta-analysis reviewed 22 published studies through July 2018 on AD, CI, VFL, and visual acuity loss. This analysis found a high prevalence of AD and CI among mild TBI patients (43.2% and 37.2%, respectively).4 These prevalence rates were also significantly higher than those reported in the literature for no TBI control populations. In this report, AIRs of AD and CI were highest among those with moderate/severe TBI.

Results of the survival analysis showed that AD or CI may be diagnosed soon after the initial TBI diagnosis. Later diagnosis of these visual dysfunctions was observed among the moderate/severe TBI group. For AD, among mild TBI patients, approximately half of the cases were diagnosed by 12 weeks and three-quarters were diagnosed by 25 weeks after TBI diagnosis. Among moderate/severe TBI patients, half of the cases were not diagnosed until 18 weeks after TBI diagnosis and three-quarters were not diganosed until 33 weeks. For CI among mild TBI patients, approximately half were diagnosed by 10 weeks and three-quarters by 23 weeks. Among moderate/severe TBI patients, half of the cases of CI were not diagnosed until 15 weeks after TBI diagnosis and three-quarters were not diagnosed by approximately 27 weeks. It is unclear at present if a delay in recognition and subsequent treatment of these conditions affects recovery, but CI has been shown to assist in identifying athletes at risk for prolonged recovery after a sport-related concussion and thus may be a prognostic screening method after TBI.12

This study is subject to certain important limitations. The categories of visual dysfunctions used were inclusive, allowing for broad capture in this initial surveillance report. All encounters were utilized in analysis rather than limiting to encounters by specific provider type. Additionally, no standard coding guidance is available for visual function following TBI, which would provide higher confidence in a surveillance definition. Because the analysis used administrative data, questions that would require detailed review of clinical records for optimal mapping of signs and symptoms were unable to be addressed. This is particularly important for conditions that would likely be asymptomatic and require specific diagnostic abilities (such as pupil function abnormalities, eye movement disorders, and nystagmus).

This study utilized a 1-year follow-up period after the documentation of the incident TBI diagnosis to ensure a greater likelihood that the diagnosed visual dysfunction was attributable to the TBI event. It is possible that there was a lag in diagnosis between the TBI event and documentation of a diagnosis of the TBI. Visual dysfunctions that occurred during this lag period would not be captured and attributed to the original TBI, potentially decreasing the counts of visual dysfunctions. Previous studies have reported no difference in multiple types of visual symptoms in terms of time after TBI event.13 It is possible that visual dysfunction developed because of some other illness or injury; however, individuals with previously diagnosed ocular trauma were excluded from the current analysis. In addition, there could be a lag between the time of the TBI event and the time the diagnosis was actually recorded in the individual’s medical record. The apparently later documentation of visual dysfunctions reflected by the survival curves for the moderate/severe TBI cohort for these conditions is unlikely to be a result of later onset of these conditions. Visual dysfunctions are known to manifest soon after injury, and the time difference observed in the current study may be related to detection bias in which the visual assessment of more severe TBI cases is delayed in favor of higher-priority medical care for the TBI itself and/or other associated injuries. Confounding due to factors that could not to be adjusted for in the analysis is another potential limitation. For example, if “sicker” service members are more likely to develop blindness and low vision and less likely to be diagnosed with TBI (perhaps because of being less physically active and therefore having less exposure opportunity), a negative bias in the association between TBI and blindness and low vision would exist. The more general categories of visual dysfunction (such as subjective visual disturbance) have multiple etiologies unrelated to TBI and would be expected to be recorded at high rates in the non-TBI population. Finally, the fact that criteria for the diagnosis of AD and CI are not standardized across providers could result in misclassification of these visual dysfunction outcomes. If service members diagnosed with TBI are more likely to be screened for visual dysfunction, a differential misclassification bias that would overestimate the rate ratios for the associations between TBI and visual dysfunction outcomes could result.

Consistent and timely diagnosis of these conditions will allow for early intervention. Current therapies include the use of specialized optical correction, including glasses with prisms (to address CI), oculomotor therapy to increase the efficiency of eye movements, and combination approaches using both correction and therapy.14

The findings of the current study suggest several initial recommendations for improving recognition and diagnosis of these visual dysfunctions. Providing primary care providers with standardized screening instruments and referral guidelines for visual dysfunctions after TBI would increase evaluations by eye care providers. Since visual acuity is not usually affected in mild TBI patients,11 standard tests for visual acuity cannot be considered sufficient for the measure of visual health after TBI. In light of the increased risk of AD and CI among TBI patients of all severity, eye care providers diagnosing these conditions should seek a history of TBI that may not have been documented. This practice would identify additional service members who could benefit from comprehensive TBI evaluation and rehabilitation. Finally, the development and dissemination of standard documentation and coding guidelines for visual dysfunction following TBI would be expected to improve surveillance and monitoring efforts for these important conditions and possibly improve continuity of care for affected service members.

Author affiliations: Department of Defense/Veterans Affairs Vision Center of Excellence, Defense Health Agency Research and Development Directorate (COL Reynolds, Dr. Barker, Dr. Merezhinskaya); Department of Veterans Affairs (Dr. Barker, Dr. Merezhinskaya); Armed Forces Health Surveillance Branch, Defense Health Agency (Mr. Oh, Dr. Stahlman)

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

REFERENCES

1. Defense and Veterans Brain Injury Center. DoD worldwide numbers for TBI. https://dvbic.dcoe.mil/dod-worldwide-numbers-tbi. Accessed 4 June 2019.

2. Defense and Veterans Brain Injury Center. TBI basics. https://dvbic.dcoe.mil/article/tbi-basics. Accessed 14 May 2019.

3. Armstrong RA. Visual problems associated with traumatic brain injury. Clin Exp Optom. 2018;101(6):716–726.

4. Merezhinskaya N, Mallia RK, Park DW, Bryden DW, Mathur K, Barker FM. Visual deficits and dysfunctions associated with traumatic brain injury: A systematic review and meta-analysis. Optom Vis Sci. 2019;96(8):542–555.

5. Duke-Elder S. The Practice of Refraction. 5th ed. St. Louis, MO: C.V. Mosby Company; 1949:141–151.

6. Cooper JS, Burns CR, Cotter SA, Daum KM, Griffin JR, Scheiman MM. Optometric Clinical Practice: Guideline Care of the Patient with Accommodative and Vergence Dysfunction. St. Louis, MO: American Optometric Association; 2011.

7. Singman EL, Matta NS, Silbert DI. Convergence insufficiency associated with migraine: a case series. Am Orthopt J. 2014;64:112–116.

8. Magone MT, Kwon E, Shin SY. Chronic visual dysfunction after blast-induced mild traumatic brain injury. J Rehabil Res Dev. 2014;51(1):71–80.

9. Lew HL, Poole JH, Vanderploeg RD, et al. Program development and defining characteristics of returning military in a VA Polytrauma Network Site. J Rehabil Res Dev 2007;44(7):1027–1034.

10. Frick KD, Singman EL. Cost of military eye injury and vision impairment related to traumatic brain injury: 2001–2017. Mil Med. 2019;184(5–6):338–343.

11. Defense Health Agency. Armed Forces Health Surveillance Branch. Surveillance Case Definition. Traumatic Brain Injury. https://health.mil/Reference-Center/Publications/2015/12/01/Traumatic-Brain-Injury. Published January 2019. Accessed 4 June 2019.

12. DuPrey KM, Webner D, Lyons A, Kucuk CH, Ellis JT, Cronholm PF. Convergence insufficiency identifies athletes at risk of prolonged recovery from sport-related concussion. Am J Sports Med. 2017;45(10):2388–2392.

13. Capo-Aponte JE, Jorgensen-Wagers KL, Sosa JA, et al. Visual dysfunctions at different stages after blast and non-blast mild traumatic brain injury. Optom Vis Sci. 2017;94(1):7–15.

14. Simpson-Jones ME, Hunt AW. Vision rehabilitation interventions following mild traumatic brain injury: a scoping review. Disabil Rehabil. 2019;41(18):2206–2222.

 

Percentage of individuals without incident accommodative dysfunction diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without incident convergence insufficiency diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without incident visual field loss diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without subjective visual disturbances diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without blindness and low vision diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without nystagmus diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without pupil function disorders diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without binocular vision disorder diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

Percentage of individuals without strabismus disorders diagnosis during the 1-year follow-up period, by TBI cohort, 2006–2018

ICD-9 and ICD-10 diagnostic codes for excluded conditions

ICD-9 and ICD-10 diagnostic codes for visual dysfunction

Demographic and military characteristics of service members by TBI cohort, active component, U.S. Armed Forces, 2006–2017

Incident cases and incidence rates of visual dysfunction diagnoses, by TBI cohort and demographic and military characteristics, active component, U.S. Armed Forces, 2006–2018

Multivariable Poisson regression models for incidence of visual dysfunction outcomes

You also may be interested in...

Rhabdomyolysis

Infographic
4/13/2018
Rhabdomyolysis

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Hyponatremia

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Cardiovascular Diseases

Infographic
4/4/2018
At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Mental Health Problems

Infographic
4/4/2018
This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus | Bug-Borne Illnesses

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Bug-Borne Illnesses

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report
<< < ... 11 12 13 14 > >> 
Showing results 181 - 195 Page 13 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.