Back to Top Skip to main content Skip to sub-navigation

Acute Respiratory Infections Among Active Component Service Members Who Use Combustible Tobacco Products and/or E-cigarette/Vaping Products, U.S. Armed Forces, 2018–2019

A Team Offutt Airman vapes in an authorized smoking area during a break Nov. 7. As of Oct. 29, 2019, over 1,800 lung injury cases and 37 deaths have been reported to the Centers for Disease Control and Prevention and the only commonality among all cases is the patient’s use of e-cigarette or vaping products. Offutt Airmen looking for support quitting can schedule an appointment with a behavioral health consultant or primary care manager by calling 402-232-2273. To schedule a unit briefing on the dangers of vaping and options for quitting, call 402-294-5977. Outside assistance, including text-message support, is available by visiting www.smokefree.gov, www.thetruth.com or www.ycq2.org.  A Team Offutt Airman vapes in an authorized smoking area during a break Nov. 7. As of Oct. 29, 2019, over 1,800 lung injury cases and 37 deaths have been reported to the Centers for Disease Control and Prevention and the only commonality among all cases is the patient’s use of e-cigarette or vaping products. Offutt Airmen looking for support quitting can schedule an appointment with a behavioral health consultant or primary care manager by calling 402-232-2273. To schedule a unit briefing on the dangers of vaping and options for quitting, call 402-294-5977. Outside assistance, including text-message support, is available by visiting www.smokefree.gov, www.thetruth.com or www.ycq2.org.

Recommended Content:

Medical Surveillance Monthly Report

WHAT ARE THE NEW FINDINGS?

This is the first report to describe self reported data on smoking and vaping habits from the ePHA. Unadjusted incidence rates of acute respiratory infection (ARI) were highest among members who reported either e-cigarette/vaping product use, or smoking and e-cigarette/vaping product (dual-use) as compared to smokers and non-users. Adjusted incidence rates of ARI revealed that members who are dual-users had statistically significantly higher rates of ARI.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

This is the first report to describe self reported data on smoking and vaping habits from the ePHA. Unadjusted incidence rates of acute respiratory infection (ARI) were highest among members who reported either e-cigarette/vaping product use, or smoking and e-cigarette/vaping product (dual-use) as compared to smokers and non-users. Adjusted incidence rates of ARI revealed that members who are dual-users had statistically significantly higher rates of ARI.

ABSTRACT

Smoking is known to contribute to the risk of acute respiratory illness (ARI) and long-term medical conditions but little is known about the acute health effects of e-cigarette/vaping product use. The annual electronic Periodic Health Assessment (ePHA), which includes questions related to smoking and e-cigarette/vaping product use, is a screening tool used by the U.S. Armed Forces to evaluate the health and medical readiness of military members. Based on responses to questions on ePHAs completed in 2018, active component service members (ACSMs) were categorized as e-cigarette/vaping product only users, smoking only, dual-product users (users of both cigarettes and e-cigarette/vaping products), or non-users. ACSMs in the youngest age groups were more likely than their older counterparts to use e-cigarette/vaping products. Unadjusted incidence rates of ARI were higher among e-cigarette/vaping product only users and dual-product users than smokers and nonusers. After adjusting for age, sex, service branch, and military occupation, the incidence rate of ARI among dual-product users was higher than the rate among nonusers; this difference was small but statistically significant. Improved understanding of the health impact of e-cigarette/vaping product use has the potential to inform policy related to use of these products and prevent unnecessary harm.

BACKGROUND

An estimated 200,000–300,000 active component service members (ACSM) are diagnosed with acute respiratory infection (ARI) annually.1-6 ARI among ACSMs affects their ability to perform their duties because of lost duty hours for medical visits and sick days required for recovery.

Numerous studies have linked smoking to cardiovascular disease, lung disease, and premature death.7 Smoking also contributes to the risk of infectious diseases, including ARI, in both smokers and those exposed to secondhand smoke.8-11 There has been a rapid increase in the use of electronic cigarettes (e-cigarettes), vaping products, and other electronic nicotine delivery systems (ENDS) among adolescents and young adults in the U.S. According to the 2018 National Health Interview Survey, among young adults aged 18–24 years, prevalence of reported current e-cigarette use was 7.6% (up from 5.2% in 2017).12 The popularity of these products raises the concern that e-cigarette/vaping product use, may, like smoking, contribute to the burden of respiratory infections and illnesses.13-16

The Department of Defense’s annual electronic Periodic Health Assessment (ePHA), which includes questions related to smoking and tobacco product use, is a screening tool used by the Armed Forces to evaluate the health and medical readiness of military members. In 2018, questions about smoking and e-cigarette/vaping product use were added to the ePHA questionnaire allowing respondents to provide detailed information about their smoking and other tobacco use behaviors. Among the 1.2 million ACSM ePHA respondents since 2018, over 113,000 reported using cigarettes, 63,000 reported using e-cigarette/vaping products, and 6,700 reported using both cigarettes and e-cigarette/vaping products (AFHSD, unpublished data, 2019). 

The aims of this study were twofold. The first aim was to describe the demographic and military characteristics of self-reported smokers, e-cigarette/vaping product users, users of both smoking and e-cigarette/vaping products (dual-product users), and nonusers among ACSMs. The second aim was to compare incidence rates of ARI among groups of self-reported cigarette smokers, e-cigarette/vaping product users, dual-product users, and nonusers. To date, there have been no studies that examine the relationship between self-reported use of e-cigarette/vaping products and ARI among ACSMs.

METHODS

Data used in this study were derived from the Defense Medical Surveillance System (DMSS) which includes inpatient and outpatient medical encounter data, Theater Medical Data Store (TMDS) data, and ePHA results. The surveillance period was 01 January 2018 through 30 September 2019. The surveillance population included all ACSMs in the U.S. Army, Navy, Air Force, and Marine Corps who completed an ePHA questionnaire between 1 January 2018 and 31 December 2018. ACSMs whose DMSS records contained diagnoses of underlying chronic respiratory diseases including asthma, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, or bronchiectasis at any time were excluded.17-19 If an ACSM completed more than 1 ePHA during the study period, only the most recent ePHA data were included.

ACSMs were classified into 4 different exposure categories based on self-reported past 30-day (recent) tobacco product use. Exposure category was determined by an ACSM’s response to the following ePHA question: “In the past 30 days, which of the following products have you used on at least one day?” Respondents were classified as smoking only if they did not endorse “electronic cigarettes, e-cigarettes, or vape pens” but responded affirmatively to using any of the following: “cigarettes”, “cigars, cigarillos, or little cigars”, “hookahs or water-pipes”, “pipes filled with tobacco (not water-pipes)”, or “bidis (small brown cigarettes wrapped in a leaf)”. Respondents were categorized as e-cigarette/vaping product only users if they endorsed the response option “electronic cigarettes, e-cigarettes, or vape pens” and did not endorse any of the smoking products. Dual product users included those who were classified as both smokers and e-cigarette/vaping product users. Respondents were identified as nonusers if they marked “none” or only endorsed any of the following: “chewing tobacco, snuff, or dip”, “snus” (moist tobacco powder placed under the lip), “dissolvable tobacco products”, or “other” (specify). The nonuser group also included all ever users who had not used any products in the past 30 days.

Demographic and military characteristics of ACSMs as well as duration of tobacco use and exposure to secondhand smoke were examined by user group. Demographic and military characteristics obtained from the DMSS included age, sex, race/ethnicity group, education level, service branch, rank/grade, military occupation, and marital status. Background characteristics from the ePHA included number of deployments in the past five years, previous tobacco use, with duration of any tobacco product use categorized as “less than 1 year”, “1 to 5 years”, “5 to 10 years”, “11 to 15 years”, or “more than 15 years”, and exposure to secondhand smoke, determined by using responses to the yes/no question “Are you regularly exposed to secondhand smoke, a mixture of smoke that comes out of the burning end of a cigarette, cigar, pipe and the smoke breathed out by the smoker (housemate, carpool, work environment)?”

Incident cases of ARI among the ACSMs in the 4 groups were identified during the 9 months following ePHA administration date using a retrospective cohort study design. The case definition was 1 inpatient, outpatient or TMDS encounter with a qualifying diagnosis of ARI occurring in the first diagnostic position (Table 1). Incident cases were identified using a 14-day gap rule; ICD-9 and ICD10 codes for ARI were not counted in the 14 days after the first recorded code, as they likely represented a continuation of the same ARI and not a new incident case of ARI. It is important to note that, because TMDS had not fully transitioned to ICD-10, ICD-9 codes appeared in the analysis. Multivariable Poisson regression models were used to calculate adjusted incidence rate ratios (AIRRs) for the user groups using nonusers as the referent and controlling for age, sex, service branch, and military occupation. Statistical analyses were conducted using SAS/STAT software, version 9.4 (2014, SAS Institute, Cary, NC).

RESULTS

Of the 802,621 ACSMs who completed an ePHA in 2018, 651,561 (81.2%) were nonusers, 37,915 (4.7%) were e-cigarette/vaping product only users, 91,135 (11.4%) were in the smoking only group, and 22,010 (2.7%) were dual-product users (Table 2). Nearly one-quarter (23.9%) of e-cigarette/vaping product only users and 31.8% of dual-product users were under 21 years old, as compared to 10.7% of smokers, and 10.4% of nonusers. More than half (56.9%) of e-cigarette/vaping product only users were under 25 years old and more than two-thirds (68.8%) of dual-product users were under 25 years old. The distributions of race/ethnicity group and service branch were broadly similar across the user groups.

Among ACSMs who completed an ePHA in 2018, the crude incidence rates of ARI per 1,000 person-years (p-yrs) during the 9 months after assessment were 281.1 for dual-users, 273.4 for e-cigarette/vaping product only users, 234.7 for non-users, and 229.3 for smokers (Table 3). Across all groups, the incidence rates of ARI among females were at least 1.9 times those of males (IRR for female nonusers was 1.9 times that of males, IRR for female dual-users was 2.4 times that of males). In all study groups, incidence rates of ARI were highest among ACSMs 18–20 years old and generally decreased with increasing age. Incidence rates of ARI were highest among e-cigarette/vaping product only users and dual-product users with an education level of high school or less compared to those with higher levels of educational attainment. Similarly, the incidence rates of ARI were highest among e-cigarette/vaping product only users and dual-product users in ranks E1–E4 and decreased with increasing rank. The incidence rates of ARI were highest among ACSMs who had not deployed in the past 5 years (Table 3).

After adjusting for age, sex, service branch, and military occupation, e-cigarette/vaping product only users and those in the smoking only group had similar incidence rates of ARI compared to nonusers (AIRR=1.02, 95% CI: 0.99–1.04, p=.123; AIRR=1.01, 95% CI: 0.99–1.03, p=.304, respectively) (Table 4). The rate of ARI among dual-product users was higher than the rate among nonusers; this difference was small but statistically significant (AIRR=1.04, 95% CI: 1.01-1.07, p=.021).

EDITORIAL COMMENT

The majority of ACSMs who reported e-cigarette/vaping product only use were less than 25 years old. A majority of e-cigarette/vaping product only users and dual product users had a high school education or less, a rank of E1–E4, never deployed, and were single, never married. More than half of those in the e-cigarette/vaping product only or dual-product user categories reported using any tobacco products for 5 years or less. This is consistent with reports that adolescents in middle and high school initiate use of e-cigarettes/vaping products.13,20

Female service members made up similar percentages of smokers, e-cigarette/vaping product users and dual users. Published data on sex differences in e-cigarette/vaping product use are limited. Some studies suggest that males are more likely to use e-cigarettes/vaping products than females, but rapidly evolving marketing techniques and social messaging have the potential to change these patterns.21

The youngest age group had the highest incidence rates of ARI across all user groups and the nonuser group. Incidence rates of ARI tended to decrease with increasing age. Women had incidence rates of ARI that were twice the rates of men across all the user groups. Women have been reported to demonstrate increased care seeking behavior compared to men, which may partially explain this finding.22 

ACSMs who reported dual use of e-cigarette/vaping products and smoking products on the ePHA during 2018 had the highest crude incidence rate of ARI, followed by e-cigarette/vaping product only users. After adjusting for age, sex, service branch, and military occupation, ACSMs who self-reported dual-product use had a statistically significantly higher rate of ARI compared to compared to nonusers, although the difference was small. 

This study has several limitations. First, self-report of health-risk behaviors can be associated with under-reporting. Second, other factors that mitigate or aggravate the risk of ARI (including living environment [e.g., barracks vs an apartment/house], contact with young children, stress, and other comorbidities) were not considered here. Third, recruits completing basic or early training are not included in this study population, as the first ePHA is completed after training at the first permanent duty station. Fourth, the current analysis did not adjust for race/ethnicity group or education level which have been shown to be associated with tobacco use behavior. Fifth, the difference in the adjusted rates of ARI among dual-product users and nonusers, although statistically significant, was very small. Further analysis may provide evidence as to whether this difference is relevant. Finally, while the ePHA is mandatory, completion rates differ by the different service branches such that the study population does not fully represent the actual ACSM population. 

Current findings suggest that dual use of e-cigarette/vaping and smoking products may be associated with ARI. However, further investigation of this potential relationship should take into account the type of e-cigarette/vaping product used as well as the duration and frequency of use. The ePHA provides a rich source of data related to e-cigarette/vaping product use that can be merged with other data sources to monitor health impacts over time. Studies adjusting for factors not considered here, such as race/ethnicity group and education are warranted. Gaining a better understanding of the risks associated with e-cigarette use/vaping is important for ensuring both the short- and long-term health of ACSMs. Such an understanding would promote military readiness, especially given that e-cigarette/vaping product users tend to be younger with potentially long military careers ahead of them.

Author Affiliations: Armed Forces Health Surveillance Division, Silver Spring, MD (CDR Clausen, Dr. Stahlman, Dr. Ziadeh); Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (LCDR Sanou).

Acknowledgements:  The authors would like to thank Ms. Zheng Hu, data analyst, at the Armed Forces Health Surveillance Division.

Disclaimer: The contents, views or opinions expressed in this publication or presentation are those of the author(s) and do not necessarily reflect official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense (DoD), or Departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

REFERENCES

1. Armed Forces Health Surveillance Branch. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018. MSMR. 26(5):2–10.

2. Armed Forces Health Surveillance Branch. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2017. MSMR. 25(5):2–9.

3. Armed Forces Health Surveillance Center. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2015. MSMR. 23(4):2–6.

4. Armed Forces Health Surveillance Center. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2013. MSMR. 21(4):2–7.

5. Armed Forces Health Surveillance Center. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2012. MSMR. 20(4):5–10.

6. Sanchez JL, Cooper MJ, Myers CA, et al. Respiratory infections in the U.S. military: Recent experience and control. Clin Microbiol Rev. 2015;28(3):743–800.

7. Centers for Disease Control and Prevention. Smoking and Tobacco Use. Health Effects. https://www.cdc.gov/tobacco/basic_information/health_effects/. Accessed 15 January 2020.

8. Vanker A, Gie RP, Zar HG. The association between environmental tobacco smoke exposure and childhood respiratory disease: a review. Expert Rev Respir Med. 2017;11(8):661–673.

9. Feldman C, Anderson, R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect. 2013; 67(3):169–184.

10. Hsieh SJ, Zhuo H, Bennowitz NL et al. Prevalence and impact of active and passive cigarette smoking in acute respiratory distress syndrome. Crit Care Med. 2014;42(9):2058–2068.

11. Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med. 2004;164(20):2206–2216

12. Dai H, Leventhal AM. Prevalence of e-cigarette use among adults in the United States, 2014–2018. JAMA. 2019; 322(18):1824–1827.

13. Soneji S, Barrington-Trimis JL, Wills TA, et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and metaanalysis. JAMA Pediatr. 2017;171(8):788–797.

14. Gilpin DF, McGown KA, Gallagher K, et al. Electronic cigarette vapour increases virulence and inflammatory potential of respiratory pathogens. Respir Res. 2019;20(1):267.

15. Yu V, Rahimy M, Korrapati A, et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 2016 (2):58–65.

16. Wu Q, Jiang D, Minor M. et al. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells PLoS One. 2014;9(9):e108342.

17. Hewitt, R, Farne H, Ritchie A, et al The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis. 2016;10(2)158–174.

18. Kim V and Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(3):228–237.

19. Juhn YJ. Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J Allergy Clin Immunol. 2014;134(2):247–257.

20. Gentzke AS, Creamer M. Vital signs: Tobacco product use among middle and high school students – United States 2011–2018. MMWR Morbid Mortal Wkly Rep. 68(6);157–164.

21. Kong, G, Kuguru, KE, Krishnan-Sarin S. Gender differences in U.S. adolescent e-cigarette use Curr Addict Rep. 2017;4(4):422–430.

22. Bertakis KD, Azari R, Helms LJ, Callahan EJ, and Robbins JA. Gender differences in the utilization of health care services. J Fam Pract. 2000;249(2):147.

 TABLE 1. ICD-9 and ICD-10 diagnostic codes used to identify cases of ARI

TABLE 2. Demographic and military characteristics of active component service members who completed an ePHA in 2018, by exposure category

TABLE 3. Incident cases and incidence rates of ARI in the 9 months following ePHA, by exposure category, by demographic and military characteristics, active component, U.S. Armed Forces, 2018–2019

TABLE 4. Adjusted incidence rate ratios (AIRR) of ARI in 9 months following ePHA, by exposure group, active component, U.S. Armed Forces, 2018–2019

You also may be interested in...

Skin and Soft Tissue Infections, Active Component, U.S. Armed Forces, January 2016–September 2020

Article
4/1/2021
Detailed view of elbow with carbuncle or furuncle. iStock.com/andriano_cz

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2005–2020

Article
4/1/2021
Marine Corps Recruit Depot, San Diego  Recruits with Bravo Company, 1st Recruit Training Battalion, hydrate after a physical training session at Marine Corps Recruit Depot San Diego, April 12, 2020. The recruits performed multiple exercises at different stations after completing a 400-meter dash. (U.S. Marine Corps photo by Cpl. Brooke C. Woods)

Recommended Content:

Medical Surveillance Monthly Report

Update: Heat Illness, Active Component, U.S. Armed Forces, 2020

Article
4/1/2021
Fort Jackson, SC. A trainee with 2nd Battalion, 60th Infantry Regiment puts his arms in an arm immersion cooling tank during training. The tanks allow Soldiers to rapidly cool by putting their forearms into a tank of ice water. (Photo by Saskia Gabriel)

Recommended Content:

Medical Surveillance Monthly Report

Disparities in COVID-19 Vaccine Initiation and Completion Among Active Component Service Members and Health Care Personnel, 11 December 2020–12 March 2021

Article
4/1/2021
Capt. Shamira Conerly, 149th Medical Group, gives Staff Sgt. Timmy Sanders, 149th Maintenance Squadron, his first does of COVID-19 vaccine on Joint Base San Antonio-Lackland, Texas, March 18, 2021. Members of the 149th Fighter Wing who have opted to receive their vaccine have been scheduled over the past two weeks by the 149th Medical Group. (US Air National Guard Photo by Senior Airman Ryan Mancuso)

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2016–2020

Article
4/1/2021
Marine Corps Recruit Depot, San Diego  Recruits with Bravo Company, 1st Recruit Training Battalion, hydrate after a physical training session at Marine Corps Recruit Depot San Diego, April 12, 2020. The recruits performed multiple exercises at different stations after completing a 400-meter dash. (U.S. Marine Corps photo by Cpl. Brooke C. Woods)

Recommended Content:

Medical Surveillance Monthly Report

A Retrospective Cohort Study of Blood Lead Levels Among Special Operations Forces Soldiers Exposed to Lead at a Firing Range in Germany

Article
3/1/2021
A soldier assigned to the U. S. Army John F. Kennedy Special Warfare Center and School who is in the Special Forces Weapons Sergeant Course fires a pistol during small arms training at Fort Bragg, North Carolina November 4, 2019. The soldiers were trained to employ, maintain and engage targets with select U.S. and foreign pistols, rifles, shotguns, submachine and machine guns, grenade launchers and mortars and in the utilization of observed fire procedures. (U.S. Army photo illustration by K. Kassens)

Recommended Content:

Medical Surveillance Monthly Report

Influenza Outbreak During Exercise Talisman Sabre, Queensland, Australia, July 2019

Article
3/1/2021
Flight Lt. Michael Campion, an aviation medical officer from No. 3 Aeromedical Evacuation Squadron prepares a medical patient leaving Exercise Talisman Sabre to be transferred to a C-27J Spartan aircraft July 18, 2019 at Rockhampton Airport. No. 3 Aeromedical Evacuation Squadron is providing medical support to troops participating in Talisman Sabre 2019, a bilateral combined Australian and United States exercise designed to train respective military services in planning and conducting Combined and Joint Task Force operations, and improve the combat readiness and interoperability between Australian and US forces. (U.S. Army photo by Sgt. 1st Class John Etheridge)

Influenza Outbreak During Exercise Talisman Sabre, Queensland, Australia, July 2019

Recommended Content:

Medical Surveillance Monthly Report

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2012–2020

Article
3/1/2021
Under a magnification of 1150X, this photomicrograph of a Gram-stained urethral discharge specimen, demonstrated the presence of Gram-negative, intracellular diplococci, which is a finding indicative of the possible presence of Neisseria gonorrhoeae bacteria.  Credit: CDC/ Dr. Caldwell

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2012–2020

Recommended Content:

Medical Surveillance Monthly Report

Influenza Surveillance Trends and Influenza Vaccine Effectiveness Among Department of Defense Beneficiaries During the 2019–2020 Influenza Season

Article
3/1/2021
Captured in 2011, this transmission electron microscopic (TEM) image depicts some of the ultrastructural details displayed by H3N2 influenza virions, responsible for causing illness in Indiana and Pennsylvania in 2011. See PHIL 13469, for the diagrammatic representation of how this Swine Flu stain came to be, through the “reassortment” of two different Influenza viruses.  Credit: CDC/ Dr. Michael Shaw; Doug Jordan, M.A.

Influenza Surveillance Trends and Influenza Vaccine Effectiveness Among Department of Defense Beneficiaries During the 2019–2020 Influenza Season

Recommended Content:

Medical Surveillance Monthly Report

Surveillance for Vector-borne Diseases Among Active and Reserve Component Service Members, U.S. Armed Forces, 2016–2020

Article
2/1/2021
This image depicts a dorsal view of a female lone star tick, Amblyomma americanum, and is found in the Southeastern, and Mid-Atlantic United States. Females exhibit the star-like spot on their distal scutum. This tick is a vector of several zoonotic diseases, including human monocytic ehrlichiosis, and Rocky Mountain spotted fever (RMSF).  CDC/Michael L. Levin, PhD

Recommended Content:

Medical Surveillance Monthly Report

Historical Perspective: The Evolution of Post-exposure Prophylaxis for Vivax Malaria Since the Korean War

Article
2/1/2021
An Aedes aegypti mosquito can transmit the viruses that cause dengue fever.  CDC/Prof. Frank Hadley Collins, Cntr. for Global Health and Infectious Diseases, Univ. of Notre Dame

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2020

Article
2/1/2021
Spc. Joshua Jones, left, and Pfc. Richard Bower, both preventive medicine specialists, 227th Preventive Medicine Detachment, 62nd Medical Brigade, check an insect trap during a field training exercise on Joint Base Lewis-McChord, June 20. The 227th PMD notionally deployed to Guiria, Venezuela, where a tropical storm caused floods and presented a real world concern for mosquitos, which are known to spawn in stagnant water and cause widespread vector borne illnesses such as malaria, yellow fever and dengue fever.  Photo by Sgt. Sarah Enos 5th Mobile Public Affairs Detachment

Recommended Content:

Medical Surveillance Monthly Report

Attrition Rates and Incidence of Mental Health Disorders in an Attention-Deficit/Hyperactivity Disorder (ADHD) Cohort, Active Component, U.S. Armed Forces, 2014–2018

Article
1/1/2021
Capt. Michelle Tsai, the behavioral health officer for the 4th Brigade, 2nd Infantry Division, reviews medical information in her office at the Joint Readiness Training Center June 17. Tsai, an Alexandria, Va., native, is here with the Raider Brigade in support of training operations for the unit's upcoming deployment to Iraq. (Photo by Pfc. Luke Rollins)

Recommended Content:

Medical Surveillance Monthly Report

Exertional Rhabdomyolysis and Sickle Cell Trait Status in the U.S. Air Force, January 2009–December 2018

Article
1/1/2021
JOINT BASE SAN ANTONIO, Texas - Master Sgt. Daniel Bedford, Air Force Recruiting Service National Events program manager, prepares to pump up a gold medal lift in the bench press during the USPA (United State Powerlifting Association) 2020 Texas State Bench Press Championship. Senior Master Sgt. Michael Lear, AFRS Strategic Marketing Division superintendent, prepares to spot Bedford. Lear and Bedford are Total Force recruiting partners who train together and motivate one another at work and in the gym. (Courtesy photo) (Photo By: babin.)

Recommended Content:

Medical Surveillance Monthly Report

The Prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) and ADHD Medication Treatment in Active Component Service Members, U.S. Armed Forces, 2014–2018

Article
1/1/2021
New Recruits with Golf Company, 2nd Recruit Training Battalion, are screened after arriving at Marine Corps Recruit Depot, San Diego, Dec. 28, 2020. As recruits arrive to the depot in the future, they will enter a staging period of 14 days during which they will be medically screened, monitored, and provided classes to prepare and orient them to begin recruit training. All of this will occur before they step onto our iconic yellow footprints and make that memorable move toward earning the title Marine. Current planning and execution remain fluid as the situation continues to evolve. The health and well-being of our recruits, recruiting and training personnel, and their families remain our primary concerns. All recruits will be screened and tested for COVID-19 prior to beginning recruit training. (U.S. Marine Corps photo by Lance Cpl. Grace J. Kindred)

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 13

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.