Skip to main content

Military Health System

Characteristics of U.S. Army Beneficiary Cases of COVID-19 in Europe, 12 March 2020–17 April 2020

Image of Three U.S. Air Force medical Airmen exit a C-17 Globemaster III aircraft. Three U.S. Air Force medical Airmen exit a C-17 Globemaster III aircraft following the first-ever operational use of the Transport Isolation System at Ramstein Air Base, Germany, April 10, 2020. The TIS is an infectious disease containment unit designed to minimize contamination risk to aircrew and medical attendants, while allowing in-flight medical care for patients afflicted by a disease--in this case, COVID-19. (U.S. Air Force photo by Staff Sgt. Devin Nothstine)

Recommended Content:

Medical Surveillance Monthly Report

What are the new findings?

This report represents the first studied large outbreak of COVID-19 among U.S. MHS beneficiaries in Europe. Rapid control of cases was achieved with robust testing, case isolation, contact identification and quarantine of contacts. During the surveillance period, 7.1% of COVID-19 cases in the MHS beneficiary population and 4.4% of cases in the U.S. military population were hospitalized.

What is the impact on readiness and force health protection?

A better understanding of how COVID-19 affects the MHS population can assist MHS planners with preparing for COVID-19 in their communities.

Abstract

In 2020, the SARS-CoV-2 virus caused an unprecedented pandemic of coronavirus disease 2019 (COVID-19). Army Public Health Command Europe monitored all cases of COVID-19 for Military Health System (MHS) beneficiaries seen in Army Military Treatment Facilities. Cases entered into the Army Disease Reporting System internet (ARDSi) were evaluated for symptomatology as this was a younger and healthier cohort than typically reported on at the time. During the surveillance period, 7.1% of COVID-19 cases among MHS beneficiaries were hospitalized; these cases presented with symptoms such as congestion, sore throat, and disturbances in taste and smell. Interventions to stop the outbreak included aggressive case finding with robust testing, control of cases and contacts, and the extreme social distancing measures seen in other countries. The outbreak was successfully brought under control in one month. Cases remained sporadic and were due largely to importation from the U.S. until the end of August 2020.

Background

As of 19 April 2020, the World Health Organization (WHO) reported over 2 million cases of COVID-19 causing over 148,000 deaths in 213 countries.1 As of 18 April 2020, 137,000 cases and over 4,000 deaths were reported in Germany.2 As of 17 April 2020, 2,986 cases were reported among Military Health System (MHS) beneficiaries.3 U.S. military personnel, their families, government contractors, and general schedule (GS) employees undergo medical screening prior to overseas assignments to ensure medical needs can be met at the assigned duty station.4 Because of this screening, some patients with chronic diseases requiring specialized medical care may be prevented from transferring overseas leading to a healthier cohort than the average U.S. population.3,5

The MHS uses a medical event reporting system known as Disease Reporting System Internet (DRSi). This is a service specific system and the Army’s version of the system is known as ADRSi. Cases of COVID-19 are reported to DRSi based on the service affiliation of the medical facility at which the patient was seen, not based on the service affiliation of the patient. A confirmed case of COVID-19 was a patient with evidence of SARS-CoV-2 in a clinical specimen using a molecular amplification test, regardless of symptoms.5 The Army has multiple medical facilities throughout Europe; however, the greatest concentration is in Germany. Locations of Army medical facilities can be found on the cover page of Regional Health Command Europe’s website.6 U.S. Army Public Health Command Europe (PHCE), which monitors ADRSi for Army Facilities throughout Europe, recorded its first confirmed case of COVID-19 on 12 March 2020. Through 17 April 2020, 170 patients were identified as confirmed cases based on having met laboratory criteria for SARS-CoV-2 infection. An additional 73 cases among MHS beneficiaries not reported through the ADRSi were noted throughout Europe from the beginning of the pandemic through April 17th. The majority of the remaining cases were reported in the United Kingdom and Italy. This report describes the epidemiology of the 170 cases of COVID-19 reported in ADRSi from 12 March 2020 through 17 April 2020.

Methods

A database of confirmed cases was developed from the ADRSi entries reported to Army PHCE from the date of the first case identified (2 March 2020) through the end of the first wave of cases (17 April 2020). Information on symptoms, past medical history, and demographics was obtained from the Armed Forces Health Longitudinal Technology Application (AHLTA) and Health Artifact and Image Management Solution (HAIMS) and added to the study database. Laboratory reports in AHLTA were utilized to verify that patients listed in the ADRSi were confirmed COVID-19 cases. Individuals presenting to medical facilities with symptoms were directed to COVID-19 screening locations where preprinted symptom questionnaires were used. These questionnaires were not standardized across the MHS, but most U.S. Army medical facilities in Europe used 1 or more of 3 different questionnaires. The most basic questionnaire that was used most frequently in medical encounters included prompts for symptoms of cough, fever, headache, and myalgias. Two more complex questionnaires included most other symptoms except loss of taste and loss of smell. Patients were more frequently asked about loss of taste and smell after 23 March when medical personnel in the region became aware that this was a common symptom complex. Microsoft Excel 2013 (Microsoft Corporation, Redmond, WA) was used to tabulate cases.

Results

Of the 170 confirmed COVID-19 cases in the study database, 163 (95.9%) were diagnosed at medical facilities in Germany. Twenty-nine patients (17.1%) had a date of symptom onset listed, but specific symptoms and hospitalization status were not available in the ADRSi, AHLTA, or HAIMS. Six (4.3%) of the 141 confirmed cases with symptom information were asymptomatic. Of the 141 cases with symptom information, 68 (48.2%) were identified as active component service members (ACSMs). The age range of ACSM cases was 20 to 56 years. Non-ACSM cases ranged in age from 2 to 72 years with a median age of 41 years (interquartile range=31–49 years). Males made up 65.3% of all cases, 83.5% of ACSMs, and 49.5% of non-ACSMs. Whites accounted for 54.7% of all cases, 67.1% of ACSMs, and 44.0% of non-ACSMs. Blacks accounted for 8.2% of all cases, 12.7% of ACSMs and 4.4% of non-ACSMs (Table 1). Those of unknown or other race accounted for the remainder of cases. The data sources used did not specify ethnicity. A total of 10 (7.1%) patients were hospitalized, and of these, 2 required intensive care (Table 2). All patients were discharged and there were no deaths among the cases during the study period.

Hypertension was prevalent in the past medical histories of 14.1%, of cases, tobacco use history in 12.9%, diabetes in 4.1%, asthma in 4.1%, and cardiovascular disease in 1.8% (data not shown). For hospitalized patients (n=10), hypertension was prevalent in the past medical histories of 20.0% of cases, diabetes in 10.0% and cardiovascular disease in 10.0% (data not shown). Of the 2 hospitalized cases who required intensive care, both had at least 2 medical conditions (data not shown). Obesity, as determined by a diagnosis in the medical record, was present in 1.8% of all cases and 10.0% of hospitalized patients. No significant past medical history was found in 54.7% of all cases and 30.0% of hospitalized cases (data not shown).

Date of symptom onset was known for each of the 164 symptomatic patients. The epidemic curve, with respect to symptom onset, is presented in Figure 1. Confirmed cases began 2 March, peaked 21 March, and were sporadic from 1 April through the end of August 2020. The most common symptoms reported were cough (70.2%), fever (62.4%), myalgias (58.2%), and headache (50.4%) (Figure 2). When symptoms were stratified by age group, the main deviations from the norm were that congestion (75.0%) was the most common symptom in individuals under 20 years of age and chills (66.7%) were the most common symptom in individuals over 59 years of age. Anosmia (loss of smell) was reported in 14.9% of cases. A total of 84.4% of cases had cough or fever as symptoms and 88.7% of cases had cough, fever, myalgias, or headache as symptom (data not shown).

Editorial Comment

The most common symptoms reported in this population were cough, fever, myalgias, and headache. In this population, stratification by age group resulted in small cell sizes, but there was an indication that younger people did have more mild symptoms such as congestion whereas older people were more likely to present with symptoms that could lead to hospitalization, such as dyspnea.

On the day the first case of COVID-19 was reported to Army PHCE, Germany had approximately 3,000 cumulative cases.2 Germany saw a rapid increase in cases over the course of the next week and more strict suppression measures went into effect such as closing schools, requiring 1.5 to 2 meter distance in all in-person transactions, and not allowing more than 2 unrelated people to be together.7 On 26 March, bases throughout Germany instituted policies of only allowing personnel to travel from home to work or other essential locations such as grocery stores and medical facilities. Additionally, in alignment with Germany’s aggressive approach to evaluating cases and contacts, military public health personnel conducted thorough case finding with notifications on social media about “hot spot” locations and testing of potential cases, contacts, and those who may have been exposed, regardless of the severity of symptoms. The rapidly instituted measures of robust case finding, testing, and "hot spot" notifications in conjunction with social distancing led to a significant decrease in the daily count of cases among U.S. military personnel and their families in Europe.

Aside from retirees, all other personnel in the dataset are subject to some form of medical screening prior to an overseas assignment. This makes the population less generalizable to the U.S. population. Additionally, 46.5% of all confirmed cases in this data set were active component military, increasing the “healthy worker” effect. Symptom data were not available for 17.1% of cases. It is reassuring that, based on thorough record review, these additional cases were not hospitalized; however, it is unclear what symptoms they may have experienced. This is also likely an undercount of total cases in Germany. Prior to 21 March 2020 guidelines for testing only those with either fever or cough and known contact with an infected individual or travel were adhered to. Additionally, the known false negative risk of RT-PCR8 likely led to fewer cases being captured than actually existed. A clinical case definition was released on 24 March; however, only laboratory confirmed cases were included in this dataset. Low counts of hospitalized cases precluded generalizations about such patients.

Lessons can be gleaned from the U.S. military experience with COVID-19 in Europe. In alignment with the WHO’s COVID-19 Strategy Update of 14 April 2020,9 control of COVID-19 is very dependent on absolute control over cases. To achieve this level of control, cases must be identified with testing, regardless of how limited their symptoms may be. Cases must be isolated and their contacts must be identified and quarantined. Due to the risk of asymptomatic spread, all individuals must be vigilant about maintaining social distance and recognizing possible symptoms in themselves and others. These aggressive strategies have significantly decreased cases in a rapid fashion in U.S. military personnel in Europe and can be employed in other military settings to gain control over COVID-19.

Author affiliation: Navy Environmental and Preventive Medicine Unit SEVEN, U.S. Navy (CDR Servies).

Acknowledgements: Mahendra Kabbur, DVM, PhD, and Rodney Coldren, MD, MPH of U.S. Army Public Health Command Europe provided the ADRSi dataset and have been leading the charge against COVID-19 in Europe.

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author and do not necessarily reflect official policy or position of the U.S. Army, the U.S. Navy, or the Department of Defense. The author is a military service member and employee of the U.S. Government. This work was prepared as part of her official duties. Title 17, U.S.C., §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C., §101 defines a U.S. Government work as a work prepared by a military Service member or employee of the U.S. Government as part of that person’s official duties.

References

1. World Health Organization. Coronavirus Disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Published 2020. Updated April 19, 2020. Accessed April 19, 2020.

2. Robert Koch Institute. Coronavirus Disease 2019 (COVID-19) Daily Situation Report of the Robert Koch Institute. Robert Koch Institute. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-04-18-en.pdf?__blob=publicationFile. Updated 18 April 2020. Accessed 19 April 2020.

3. Armed Forces Health Surveillance Division. Coronavirus Disease 2019 (COVID-19) Outbreak Update #39. In. Silver Spring MD: Armed Forces Health Surveillance Division; 2020.

4. US Army Medical Department. Screening for Overseas Assignments. U.S. Army Medical Command. https://efmp.amedd.army.mil/screening/assignments.html. Published 2010. Updated 31 August 2010. Accessed 19 April 2020.

5. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19) 2020 Interim Case Definition, Approved April 5, 2020. Centers for Disease Control and Prevention. https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/. Updated 5 April 2020. Accessed 1 December 2020.

6. Regional Health Command Europe. Army Medicine Europe. https://rhce.amedd.army.mil/index. cfm. Updated 9 December 2020. Accessed 9 December 2020.

7. Stafford N. Covid-19: Why Germany's case fatality rate seems so low. BMJ. 2020;369:m1395.

8. Xiao AT, Tong YX, Zhang S. False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. J Med Virol. 2020.

9. World Health Organization. COVID-19 Strategy Update. Geneva, Switzerland: World Health Organization; 14 April 2020.

FIGURE 1. COVID-19 cases by date of symptom onset in Germany and among MHS beneficiaries, 1 March–17 April 2020

FIGURE 2. Symptoms by age group of confirmed cases of COVID-19 (n=141)

TABLE 1. Demographic characteristics of confirmed COVID-19 cases and hospitalized patients in ADRSi as of 17 April 2020

TABLE 2. Demographic characteristics of cases with information on hospitalization status and cases who were hospitalized

You also may be interested in...

MSMR Vol. 29 No. 07 - July 2022

Report
7/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance

Article
7/1/2022
A patient at Naval Hospital Pensacola prepares to have a low-dose computed tomography test done to screen for lung cancer. Lung cancer is the leading cause of cancer-related deaths among men and women. Early detection can lower the risk of dying from this disease. (U.S. Navy photo by Jason Bortz)

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of time not on active duty.

Recommended Content:

Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

Article
6/1/2022
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

As in previous years, among service members deployed during 2021, injury/poisoning, musculoskeletal diseases and signs/symptoms accounted for more than half of the total health care burden during deployment. Compared to garrison disease burden, deployed service members had relatively higher proportions of encounters for respiratory infections, skin diseases, and infectious and parasitic diseases. The recent marked increase in the percentage of total medical encounters attributable to the ICD diagnostic category "other" (23.0% in 2017 to 44.4% in 2021) is likely due to increases in diagnostic testing and immunization associated with the response to the COVID-19 pandemic.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

Article
6/1/2022
Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

In 2021, mental health disorders accounted for the largest proportions of the morbidity and health care burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 and those aged 65 or older, musculoskeletal diseases accounted for the most morbidity and health care burdens. As in previous years, this report documents a substantial majority of non-service member beneficiaries received care for current illness and injury from the Military Health System as outsourced services at non-military medical facilities.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

Hospitalizations, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Hospitalizations, Active Component, U.S. Armed Forces, 2021

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental health disorders, pregnancy-related conditions, injury/poisoning, and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

In 2021, as in prior years, the medical conditions associated with the most medical encounters, the largest number of affected service members, and the greatest number of hospital days were in the major categories of injuries, musculoskeletal disorders, and mental health disorders. Despite the pandemic, COVID-19 accounted for less than 2% of total medical encounters and bed days in active component service members.

Recommended Content:

Medical Surveillance Monthly Report

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

Article
6/1/2022
Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were most common, followed by disorders of the digestive system and mental health disorders.

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared to 19% in 2020.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Article
5/1/2022
NIANTIC, CT, UNITED STATES 06.16.2022 U.S. Army Staff Sgt. John Young, an information technology specialist assigned to Joint Forces Headquarters, Connecticut Army National Guard, works on a computer at Camp Nett, Niantic, Connecticut, June 16, 2022. Young provided threat intelligence to cyber analysts that were part of his "Blue Team" during Cyber Yankee, a cyber training exercise meant to simulate a real world environment to train mission essential tasks for cyber professionals. (U.S. Army photo by Sgt. Matthew Lucibello)

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021

Article
5/1/2022
iStock—The castor bean tick (Ixoedes ricinus). Credit: Erik Karits

Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that is transmitted by the bite of infected ticks, mostly found in wooded habitats in parts of Europe and Asia

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Article
5/1/2022
SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin)

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

Recommended Content:

Medical Surveillance Monthly Report

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2013–2021

Article
5/1/2022
This illustration depicts a 3D computer-generated image of a number of drug-resistant Neisseria gonorrhoeae bacteria. CDC/James Archer

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2013–2021. In general, compared to their respective counterparts, younger service members, non-Hispanic Black service members, those who were single and other/unknown marital status, and enlisted service members had higher incidence rates of STIs.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 13
Refine your search
Last Updated: December 16, 2021
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery