Back to Top Skip to main content

Brief Report: Diagnoses of Scarlet Fever in Military Health System (MHS) Beneficiaries Under 17 Years of Age Across the MHS and in England, 2013–2018

A maculopapular rash, a hallmark symptom of measles, on an infant’s face. Credit: CDC/Jim Goodson, M.P.H. A maculopapular rash, a hallmark symptom of measles, on an infant’s face. Credit: CDC/Jim Goodson, M.P.H.

Recommended Content:

Medical Surveillance Monthly Report

BACKGROUND

Scarlet fever is an illness caused by infection with Streptococcus pyogenes that most commonly occurs in childhood (peak age = 7–8 years old). It is characterized by an erythematous, sandpaper-like rash due to one of several erythrogenic exotoxins produced by group A streptococci. Scarlet fever typically occurs with streptococcal pharyngitis but may rarely develop with skin or wound infections. Aside from the widespread rash, scarlet fever has the same sequelae and treatment as streptococcal pharyngitis without a rash. Cases typically follow a seasonal pattern, more commonly arising in late fall, winter, and spring. S. pyogenes has over 240 distinct serotypes based on M-protein serotype and the more discriminating M-protein gene sequencing (known as emm types).1

Because scarlet fever is a reportable disease in England, a large increase in incident cases was identified in 2014. This increase has continued to persist throughout the country. Public health surveillance identified a 3- to 4-fold increase in incidence of scarlet fever, which has significantly impacted schools and nurseries in the country.2 Strains of S. pyogenes that were emm typed during this time period demonstrated a wide variety of M-protein gene sequences, but a new emm1 strain (M1UK) that is genotypically distinct from other pandemic emm1 isolates has increased in prevalence in England as invasive streptococcal disease has also risen.3,4 Although increased incidence of scarlet fever had been described in parts of Asia since 2008, England was the first European country to detect a sudden large-scale increase in cases, and this discovery has led to concern about similar widespread outbreaks occurring in other areas of the world.2

Scarlet fever is not a reportable disease in the U.S.,5 and military surveillance currently does not routinely perform M-protein gene sequencing on group A streptococcus isolates. However, diagnoses of scarlet fever can be identified throughout the Military Health System (MHS) using International Classification of Diseases, 9th and 10th Revision (ICD-9 and ICD-10, respectively) codes. The objectives of this brief report were to review scarlet fever incidence in the MHS among patients under 17 years of age and to identify any large spikes in annual cases at military treatment facilities, particularly at the bases located in England.

METHODS

The surveillance period was 1 January 2013 through 31 December 2018. The surveillance population consisted of beneficiaries of the MHS who were under 17 years of age at the time of the incident diagnosis. Diagnoses of scarlet fever were ascertained from the Defense Medical Surveillance System, which includes administrative records of all medical encounters of individuals who received care in fixed (i.e., not deployed or at sea) medical facilities in the MHS or in civilian facilities when care was reimbursed by the MHS (i.e., Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care). For surveillance purposes, an incident case of scarlet fever was defined by a qualifying ICD-9 or ICD-10 diagnosis code (Table 1) in any diagnostic position of a record of a hospitalization or an outpatient medical encounter. The incidence date was considered the date of the first hospitalization or outpatient medical encounter that included a case-defining diagnosis. An individual could be counted as an incident case of scarlet fever only once during the surveillance period; any beneficiary with a diagnosis of scarlet fever before the surveillance period was excluded from the analysis. Counts of scarlet fever diagnoses and incidence rates were calculated for each year of the surveillance period. Incidence rates were calculated as incident scarlet fever diagnoses per 10,000 person-years (p-yrs) and were stratified by selected demographic characteristics. Denominators for incidence rate calculations were calculated by identifying the number of beneficiaries who had at least 1 medical encounter during each year of the surveillance period. Diagnoses and incidence rates were calculated for the entire MHS in the primary analysis.

A secondary analysis was designed to identify a possible increasing trend in scarlet fever diagnoses in MHS beneficiaries receiving care in England during the surveillance period. For this analysis, cases were restricted to those who received a scarlet fever diagnosis at a facility located in England as identified through the Defense Medical Information System Identifier.

RESULTS

During the 6-year surveillance period, a total of 7,080 MHS beneficiaries under age 17 received an incident diagnosis of scarlet fever; 85 incident cases of scarlet fever were identified in MHS beneficiaries receiving care in England. A slightly greater proportion of cases was diagnosed among male beneficiaries, while the vast majority of cases occurred in beneficiaries under age 10 (Table 2). Across all MHS beneficiaries, the greatest number of scarlet fever cases occurred in 2013 (n=1,366) and the lowest number of cases occurred in 2018 (n=871). In contrast, in MHS beneficiaries receiving care in England, the greatest number of scarlet fever cases occurred in 2015 (n=20) and the lowest number of cases in 2017 (n=7) (Figure).
Across the MHS as a whole, crude annual incidence rates of scarlet fever diagnoses were relatively stable from 2013 through 2016 and then declined throughout the remainder of the surveillance period. In contrast, crude annual incidence rates among MHS beneficiaries in England increased almost 80% from 2013 through 2015. Subsequently, crude incidence rates declined slightly in 2016 to 30.8 cases per 10,000 p-yrs before declining to their lowest rates during the period in 2017. Rates increased again in 2018 to 23.9 cases per 10,000 p-yrs (Figure).

EDITORIAL COMMENT

In 2014, England experienced a large and unexpected increase in cases of scarlet fever over the previous year, and the increase in cases continued unabated through 2018. Results of the current analysis suggest that a similar increase in cases was seen in MHS beneficiaries in England between 2013 and 2015 and again in 2018, although scarlet fever incidence rates across the entire MHS were relatively stable during the same period.

While this brief report demonstrates that MHS beneficiaries in England did have increased incidence of scarlet fever during a period while England was experiencing an outbreak, it is more difficult to interpret scarlet fever rates across the MHS. A comparison between rates in the entire MHS cohort and the MHS England cohort could be impacted by differential coding practices in England versus other locations in the MHS. Because scarlet fever is not a reportable illness in the U.S., physicians may be more likely to code a streptococcal illness (e.g., strep pharyngitis) and rash separately, rather than using a specific scarlet fever code. Future analyses of all streptococcal infection diagnoses could provide some clarification of this issue. In addition, it is likely that medical providers in England were aware of the ongoing outbreak there and thus more likely to detect and diagnose scarlet fever cases when they presented in American beneficiaries (i.e., detection bias).

Although the increase in incidence rates of scarlet fever in England is striking, it is important to recognize that the increase in the number of cases from year to year was relatively small. Only 85 cases were ascertained over 6 years among MHS beneficiaries in England, and the largest increase in the absolute number of cases was 6 cases from 2017–2018. When the numbers of cases used to compute rates are small, those rates can have poor reliability. This significant limitation should be considered when interpreting these data. Another limitation is that denominators used in the calculation of incidence rates were based on the number of beneficiaries who sought care at least once during the year rather than the number of beneficiaries eligible for care. Therefore, the denominator used for these calculations is likely an underestimate of the true denominator.

Fluctuations in crude annual rates of scarlet fever are likely due to a number of factors that include the number and emergence of new strep A strains, how widely those strains may be circulating, and the degree of immunity to those strains in a susceptible population. One possible reason for the increase in England has been attributed to a new emm1 strain of S. pyogenes,3 but it is unclear whether, and to what extent, this may have impacted rates of scarlet fever in MHS beneficiaries. Laboratory surveillance of this and other emerging strains in military populations may be warranted.
Wherever DoD personnel and their families are stationed, they are at risk from infectious outbreaks in the local community and/or country. This brief report provides an example of the importance of monitoring local public health reports to provide optimal medical care to active duty members and MHS beneficiaries.

Author affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (Maj Sayers); Defense Health Agency, Armed Forces Health Surveillance Branch (Mr. Bova, Dr. Clark).

REFERENCES

1.  Committee on Infectious Diseases, American Academy of Pediatrics. Red Book: 2018–2021 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018.
2.  Lamagni T, Guy R, Chand M, et al. Resurgence of scarlet fever in England, 2014–16: a population-based surveillance study. Lancet Infect Dis. 2018;18(2):180–187.
3.  Lynskey NN, Jauneikaite E, Li HK, et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect Dis. 2019;19(11):1209–1218.
4.  Brouwer S, Lacey JA, You Y, Davies MR, Walker MJ. Scarlet fever changes its spots. Lancet Infect Dis. 2019;19(11):1154–1155.
5.  Centers for Disease Control and Prevention. Group A streptococcal (GAS) disease. https://www.cdc.gov/groupastrep/surveillance.html. Accessed 24 September 2019.

Numbers of incident cases and crude incidence rates of scarlet fever, by location, MHS beneficiaries under 17 years of age, 2013–2018

ICD-9 and ICD-10 codes used to identify scarlet fever cases  

Counts and percentages of scarlet fever cases, by age and sex, all MHS beneficiaries and beneficiaries within England, 2013–2018

You also may be interested in...

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Medical Surveillance Monthly Report | Epidemiology and Analysis

Cold injuries among active duty U.S. service members drop to lowest level since winter 2011–2012

Article
1/23/2017
U.S. service members often perform duties in cold weather climates where they may be exposed to frigid conditions and possible injury.

Cold injuries among active duty U.S. service members drop to the lowest level since winter 2011-2012, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Winter Safety
<< < ... 11 12 13 > >> 
Showing results 181 - 188 Page 13 of 13

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.