Back to Top Skip to main content Skip to sub-navigation

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2015–2019

Midshipmen from the U.S Naval Academy Class of 2016 conduct a log carrying exercise. (U.S. Navy photo by Mass Communication Specialist 2nd Class Todd Frantom) Midshipmen from the U.S Naval Academy Class of 2016 conduct a log carrying exercise. (U.S. Navy photo by Mass Communication Specialist 2nd Class Todd Frantom)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

Among active component service members in 2019, there were 512 incident cases of exertional rhabdomyolysis, for an unadjusted incidence rate of 38.9 cases per 100,000 person-years (p-yrs). Subgroup-specific rates in 2019 were highest among males, those less than 20 years old, non-Hispanic black service members, Army or Marine Corps members, and those in “other/unknown” or combat-specific occupations. During 2015–2019, crude rates of exertional rhabdomyolysis fluctuated between a low of 35.2 per 100,000 p-yrs in 2015 and a high of 42.4 per 100,000 p-yrs in 2018, after which the rate decreased to 38.9 per 100,000 p-yrs in 2019. Compared to service members in other race/ethnicity groups, non-Hispanic blacks had the highest overall rate of exertional rhabdomyolysis in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of darkened urine after strenuous physical activity, especially in hot, humid weather.

WHAT ARE THE NEW FINDINGS?   

During the 5-year period, the annual numbers and rates of incident exertional rhabdomyolysis cases peaked in 2018 and then dropped in 2019. Exertional rhabdomyolysis continued to occur most frequently from late spring through early fall at installations that support basic combat/recruit training or major Army or Marine Corps combat units.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Prompt recognition and treatment of exertional rhabdomyolysis usually prevent severe complications. However, some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury. Moreover, untimely recurrences may compromise a unit’s mission. Commanders and supervisors should be vigilant for early signs of exertional heat injuries and, when such signs are detected, should intervene aggressively.

BACKGROUND

Rhabdomyolysis is characterized by the breakdown of skeletal muscle cells and the subsequent release of intracellular muscle contents into the circulation. The characteristic triad of rhabdomyolysis includes weakness, myalgias, and red to brown urine (due to myoglobinuria) accompanied by an elevated serum concentration of creatine kinase.1,2 In exertional rhabdomyolysis, damage to skeletal muscle is generally caused by high-intensity, protracted, or repetitive physical activity, usually after engaging in unaccustomed strenuous exercise (especially with eccentric and/or muscle-lengthening contractions).3 Even athletes who are used to intense training and who are being carefully monitored are at risk of this condition,4especially if new overexertion-inducing exercises are being introduced.5 Illness severity ranges from elevated serum muscle enzyme levels without clinical symptoms to life-threatening disease associated with extreme enzyme elevations, electrolyte imbalances, and acute kidney failure.1–3,6

Risk factors for exertional rhabdomyolysis include exertion in hot and humid conditions, younger age, male sex, a lower level of physical fitness, a prior heat illness, impaired sweating, and a lower level of education.1,3,7–10 Acute kidney injury, due to an excessive concentration of free myoglobin in the urine accompanied by volume depletion, renal tubular obstruction, and renal ischemia, represents a serious complication of rhabdomyolysis.6,11 Severely affected patients can also develop compartment syndrome, fever, dysrhythmias, metabolic acidosis, and altered mental status.10

In U.S. military members, rhabdomyolysis is a significant threat during physical exertion, particularly under heat stress.7,9,12 Moreover, although rhabdomyolysis can affect any service member, new recruits, who are not yet accustomed to the physical exertion required of basic training, may be at particular risk.9 Each year, the MSMR summarizes the numbers, rates, trends, risk factors, and locations of occurrences of exertional heat injuries, including exertional rhabdomyolysis. This report includes the data for 2015–2019. Additional information about the definition, causes, and prevention of exertional rhabdomyolysis can be found in previous issues of the MSMR.12

METHODS

The surveillance period was 1 January 2015 through 31 December 2019. The surveillance population included all individuals who served in the active component of the Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. All data used to determine incident exertional rhabdomyolysis diagnoses were derived from records routinely maintained in the Defense Medical Surveillance System (DMSS). These records document both ambulatory encounters and hospitalizations of active component members of the U.S. Armed Forces in fixed military and civilian (if reimbursed through the Military Health System [MHS]) treatment facilities worldwide. In-theater diagnoses of exertional rhabdomyolysis were identified from medical records of service members deployed to Southwest Asia/Middle East and whose healthcare encounters were documented in the Theater Medical Data Store.

For this analysis, a case of exertional rhabdomyolysis was defined as an individual with 1) a hospitalization or outpatient medical encounter with a diagnosis in any position of either “rhabdomyolysis” (International Classification of Diseases, 9th Revision [ICD-9]: 728.88; International Classification of Diseases, 10th Revision [ICD-10]: M62.82) or “myoglobinuria” (ICD-9: 791.3; ICD-10: R82.1) plus a diagnosis in any position of 1 of the following: “volume depletion (dehydration)” (ICD-9: 276.5*; ICD-10: E86.0, E86.1, E86.9), “effects of heat and light” (ICD-9: 992.0–992.9; ICD-10: T67.0*–T67.9*), “effects of thirst (deprivation of water)” (ICD-9: 994.3; ICD-10: T73.1*), “exhaustion due to exposure” (ICD-9: 994.4; ICD-10: T73.2*), or “exhaustion due to excessive exertion (overexertion)” (ICD-9: 994.5; ICD-10: T73.3*).13 Each individual could be considered an incident case of exertional rhabdomyolysis only once per calendar year.

To exclude cases of rhabdomyolysis that were secondary to traumatic injuries, intoxications, or adverse drug reactions, medical encounters with diagnoses in any position of “injury, poisoning, toxic effects” (ICD-9: 800.*–999.*; ICD-10: S00.*–T88.*, except the codes specific for “sprains and strains of joints and adjacent muscles” and “effects of heat, thirst, and exhaustion”) were not considered indicative of exertional rhabdomyolysis.13

For surveillance purposes, a “recruit trainee” was defined as an active component member in an enlisted grade (E1–E4) who was assigned to 1 of the services’ recruit training locations (per the individual’s initial military personnel record). For this report, each service member was considered a recruit trainee for the period of time corresponding to the usual length of recruit training in his or her service. Recruit trainees were considered a separate category of enlisted service members in summaries of rhabdomyolysis cases by military grade overall.

In-theater diagnoses of exertional rhabdomyolysis were analyzed separately; however, the same case-defining criteria and incidence rules were applied to identify incident cases. Records of medical evacuations from the U.S. Central Command (CENTCOM) area of responsibility (AOR) (e.g., Iraq and Afghanistan) to a medical treatment facility outside the CENTCOM AOR also were analyzed separately. Evacuations were considered case defining if affected service members met the above criteria in a permanent military medical facility in the U.S. or Europe from 5 days before to 10 days after their evacuation dates.

The new electronic health record for the MHS, MHS GENESIS, was implemented at 4 military treatment facilities in the state of Washington in 2017 (Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center). Implementation of the second wave of MHS GENESIS sites began in 2019 and included 3 facilities in California (Travis Air Force Base [AFB], the Presidio of Monterey, and Naval Air Station Lemoore) and 1 in Idaho (Mountain Home AFB). Medical data from facilities using MHS GENESIS are not available in the DMSS. Therefore, medical encounter data for individuals seeking care at any of these facilities after their conversion to MHS GENESIS during 2017–2019 were not included in the current analysis.

RESULTS

In 2019, there were 512 incident cases of rhabdomyolysis likely associated with physical exertion and/or heat stress (exertional rhabdomyolysis) (Table 1). The crude (unadjusted) incidence rate was 38.9 cases per 100,000 person-years (p-yrs). Subgroup-specific incidence rates of exertional rhabdomyolysis were highest among males (43.3 per 100,000 p-yrs), those less than 20 years old (88.0 per 100,000 p-yrs), non-Hispanic black service members (66.1 per 100,000 p-yrs), Marine Corps or Army members (91.9 per 100,000 p-yrs and 47.3 per 100,000 p-yrs, respectively), and those in “other/unknown” or combat-specific occupations (72.1 per 100,000 p-yrs and 66.0 per 100,000 p-yrs, respectively) (Table 1). Of note, the incidence rate among recruit trainees was more than 6 times that among other enlisted members and officers, even though cases among this group accounted for only 13.3% of all cases in 2019.

During the surveillance period, crude rates of exertional rhabdomyolysis fluctuated between a low of 35.2 per 100,000 p-yrs in 2015 and a high of 42.4 per 100,000 p-yrs in 2018, after which the rate decreased to 38.9 per 100,000 p-yrs in 2019 (Figure 1). The annual incidence rates of exertional rhabdomyolysis were highest among non-Hispanic blacks in every year except 2018, when the highest rate occurred among Asian/Pacific Islanders (data not shown). Overall and annual rates of incident exertional rhabdomyolysis were highest among service members in the Marine Corps, intermediate among those in the Army, and lowest among those in the Air Force and Navy (Table 1, Figure 2). Among Marine Corps and Army members, annual rates increased between 2015 and 2018 (35.7% and 21.0% increases, respectively) and then dropped in 2019 (Figure 2). Annual rates among Navy members increased 41.1% over the course of the 5-year surveillance period, while rates among service members in the Air Force remained relatively stable. During 2015–2019, approximately three-quarters (75.3%) of the cases occurred between May and October (Figure 3).

Rhabdomyolysis by location

During the 5-year surveillance period, the medical treatment facilities at 13 installations diagnosed at least 50 cases each; when combined, these installations diagnosed more than half (57.3%) of all cases (Table 2). Of these 13 installations, 4 provide support to recruit/basic combat training centers (Marine Corps Recruit Depot [MCRD] Parris Island/Beaufort, SC; Fort Benning, GA; Joint Base San Antonio–Lackland, TX; and Fort Leonard Wood, MO). In addition, 6 installations support large combat troop populations (Fort Bragg, NC; Marine Corps Base [MCB] Camp Pendleton, CA; MCB Camp Lejeune/Cherry Point, NC; Fort Shafter, HI; Fort Hood, TX; and Fort Campbell, KY). During 2015–2019, the most cases overall were diagnosed at MCRD Parris Island/Beaufort, SC (n=282), and Fort Bragg, NC (n=274), which together accounted for more than one-fifth (21.8%) of all cases (Table 2).

Rhabdomyolysis in Iraq and Afghanistan

There were 7 incident cases of exertional rhabdomyolysis diagnosed and treated in Iraq/Afghanistan during the 5-year surveillance period (data not shown). Deployed service members who were affected by exertional rhabdomyolysis were most frequently non-Hispanic black or non-Hispanic white (n=5; 71.4% and n=2; 28.6%, respectively), male (n=7), aged 20–29 years (n=4; 57.1%), in the Army (n=7), enlisted (n=7), and in communication/intelligence (n=2; 28.6%) or repair/engineering occupations (n=2; 28.6%). One active component service member was medically evacuated from Iraq/Afghanistan for exertional rhabdomyolysis during the surveillance period; this medical evacuation occurred in September 2015 (data not shown).

EDITORIAL COMMENT

This report documents that the crude annual incidence rates of exertional rhabdomyolysis among active component U.S. military members fluctuated between a low of 35.2 per 100,000 p-yrs in 2015 and a high of 42.4 per 100,000 p-yrs in 2018, after which rates decreased to 38.9 per 100,000 p-yrs (8.2% decrease) in 2019. Exertional rhabdomyolysis continued to occur most frequently from late spring through early fall at installations that support basic combat/recruit training or major Army or Marine Corps combat units.

The risks of heat injuries, including exertional rhabdomyolysis, are elevated among individuals who suddenly increase overall levels of physical activity, recruits who are not physically fit when they begin training, and recruits from relatively cool and dry climates who may not be acclimated to the high heat and humidity at training camps in the summer.1,2,9 Soldiers and Marines in combat units often conduct rigorous unit physical training, personal fitness training, and field training exercises regardless of weather conditions. Thus, it is not surprising that recruit camps and installations with large ground combat units account for most of the cases of exertional rhabdomyolysis.

The annual incidence rates among non-Hispanic black service members were higher than the rates among members of other race/ethnicity groups in 4 of the 5 previous years, with the exception of 2018. This observation has been attributed, at least in part, to an increased risk of exertional rhabdomyolysis among individuals with sickle cell trait14–17 and is supported by at least 1 other study among U.S. service members.9 Supervisors at all levels should ensure that guidelines to prevent heat injuries are consistently implemented and should be vigilant for early signs of exertional heat injuries, including rhabdomyolysis, among all service members.

The findings of this report should be interpreted with consideration of its limitations. A diagnosis of “rhabdomyolysis” alone does not indicate the cause. Ascertainment of the probable causes of cases of exertional rhabdomyolysis was attempted by using a combination of ICD-9/ICD-10 diagnostic codes related to rhabdomyolysis with additional codes indicative of the effects of exertion, heat, or dehydration. Furthermore, other ICD-9/ICD-10 codes were used to exclude cases of rhabdomyolysis that may have been secondary to trauma, intoxication, or adverse drug reactions.

The measures that are effective at preventing exertional heat injuries in general apply to the prevention of exertional rhabdomyolysis. In the military training setting, the risk of exertional rhabdomyolysis can be reduced by emphasizing graded, individual preconditioning before starting a more strenuous exercise program and by adhering to recommended work/rest and hydration schedules, especially in hot weather. The physical activities of overweight and/or previously sedentary new recruits should be closely monitored. Strenuous activities during relatively cool mornings following days of high heat stress should be particularly closely monitored; in the past, such situations have been associated with increased risk of exertional heat injuries (including rhabdomyolysis).8

Management after treatment for exertional rhabdomyolysis, including the decision to return to physical activity and duty, is a persistent challenge among athletes and military members.9,10,18It is recommended that those who have had a clinically confirmed exertional rhabdomyolysis event be further evaluated and risk stratified for recurrence before return to activity/duty.10,18–20Low-risk patients may gradually return to normal activity levels, while those deemed high risk for recurrence will require further evaluative testing (e.g., genetic testing for myopathic disorders).18,19

Commanders and supervisors at all levels should be vigilant for early signs of exertional heat injuries and should intervene aggressively when dangerous conditions, activities, or suspicious illnesses are detected. Finally, medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of darkened urine (possibly due to myoglobinuria) after strenuous physical activity, especially in hot, humid weather.

REFERENCES

1.  Zutt R, van der Kooi AJ, Linthorst GE, Wanders RJ, de Visser M. Rhabdomyolysis: review of the literature. Neuromuscul Disord. 2014;24(8):651–659.

2.  Giannoglou GD, Chatzizisis YS, Misirli G. The syndrome of rhabdomyolysis: pathophysiology and diagnosis. Eur J Intern Med. 2007;18(2):90–100.

3.  Rawson ES, Clarkson PM, Tarnopolsky MA. Perspectives on exertional rhabdomyolysis. Sports Med. 2017;47(suppl 1):33–49.

4.  McKewon S. Two Nebraska football players hospitalized, treated after offseason workout. Omaha World-Herald. 20 January 2019. https://www.omaha.com/huskers/football/two-nebraskafootball-players-hospitalized-treated-after-offseason-workout/article_d5929674-53a7-5d90-803e-6b4e9205ee60.html. Accessed 10 March 2020.

5.  Raleigh MF, Barrett JP, Jones BD, Beutler AI, Deuster PA, O'Connor FG. A cluster of exertional rhabdomyolysis cases in a ROTC program engaged in an extreme exercise program. Mil Med. 2018;183(suppl 1):516–521.

6.  Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.

7.  Hill OT, Wahi MM, Carter R, Kay AB, McKinnon CJ, Wallace RF. Rhabdomyolysis in the U.S. active duty Army, 2004–2006. Med Sci Sports Exerc. 2012;44(3):442–449.

8.  Lee G. Exercise-induced rhabdomyolysis. R I Med J (2013). 2014;97(11):22–24.

9.  Hill OT, Scofield DE, Usedom J, et al. Risk factors for rhabdomyolysis in the U.S. Army. Mil Med. 2017;182(7):e1836–e1841.

10.  Knapik JJ, O’Connor FG. Exertional rhabdomyolysis: epidemiology, diagnosis, treatment, and prevention. J Spec Oper Med. 2016;15(3):65–71.

11.  Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol. 2000;8(2):72–76.

12.  Armed Forces Health Surveillance Branch. Update: Exertional rhabdomyolysis among active component members, U.S. Armed Forces, 2014–2018. MSMR. 2019;26(4):21–26.

13.  Armed Forces Health Surveillance Branch. Surveillance case definition. Exertional rhabdomyolysis. https://www.health.mil/Reference-Center/Publications/2017/03/01/Rhabdomyolysis-Exertional. Accessed 10 March 2020.

14.  Gardner JW, Kark JA. Fatal rhabdomyolysis presenting as mild heat illness in military training. Mil Med. 1994;159(2):160–163.

15.  Makaryus JN, Catanzaro JN, Katona KC. Exertional rhabdomyolysis and renal failure in patients with sickle cell trait: is it time to change our approach? Hematology. 2007;12(4):349–352.

16.  Ferster K, Eichner ER. Exertional sickling deaths in Army recruits with sickle cell trait. Mil Med. 2012;177(1):56–59.

17.  Nelson DA, Deuster PA, Carter R, Hill OT, Wolcott VL, Kurina LM. Sickle cell trait, rhabdomyolysis, and mortality among U.S. Army soldiers. N Engl J Med. 2016;375(5):435–442.

18.  O’Connor FG, Brennan FH Jr, Campbell W, Heled Y, Deuster P. Return to physical activity after exertional rhabdomyolysis. Curr Sports Med Rep. 2008;7(6):328–331.

19.  Atias D, Druyan A, Heled Y. Recurrent exertional rhabdomyolysis: coincidence, syndrome, or acquired myopathy? Curr Sports Med Rep. 2013;12(6):365–369.

20.  O’Connor FG, Deuster P, Leggit J, et al. Clinical Practice Guideline for the Management of Exertional Rhabdomyolysis in Warfighters. Bethesda, Maryland: Uniformed Services University. 2017.

Incident cases and incidence rates of extertional rhabdomyolysis, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2015–2019

Annual incidence rates of exertional rhabdomyolysis, by service, active component, U.S. Armed Forces, 2015–2019

Cumulative numbers of exertional rhabdomyolysis cases, by month of diagnosis, active component, U.S. Armed Forces, 2015–2019

 Incident casesa and incidence ratesb of exertional rhabdomyolysis, by demographic and military characteristics, active component, U.S. Armed Forces, 2019

Incident cases of exertional rhabdomyolysis, by installation (with at least 30 cases during the period), active component, U.S. Armed Forces, 2015–2019

You also may be interested in...

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Cardiovascular disease-related medical evacuations

Infographic
1/29/2019
Cardiovascular disease-related medical evacuations

This descriptive analysis summarizes the demographic characteristics, counts, rates and temporal trends for Cardiovascular disease-related medical evacuations from the CENTCOM area of responsibility. In addition, the percentage of those evacuated who had received pre-deployment diagnoses indicating cardiovascular risk is summarized. Responses to questions regarding health status and physician referrals on the DD2795 are also summarized.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Non-alcoholic fatty liver disease

Infographic
1/29/2019
HPV

At the time of this report, there were no published studies of non-alcoholic fatty liver disease (NAFLD) incidence over time among active component U.S. military personnel. Examining the incidence rates of NAFLD and their temporal trends among active component U.S. military members can provide insights into the future burden of NAFLD on the MHS.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Acute Flaccid Myelitis Case Reporting

Infographic
1/29/2019
Acute Flaccid Myelitis Case Reporting

This case highlights important clinical characteristics of acute flaccid myelitis and emphasizes the importance of including AFM in the differential diagnosis when evaluating active duty service members and Military Health System beneficiaries presenting with paralysis.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing’s syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Rabies

Infographic
11/20/2018
Rabies

Although Germany is rabies-free for terrestrial land mammals, rabies exposure remains a concern for U.S. military personnel assigned there because of personal and military travel and deployments to rabies endemic countries. Deployments have become much more variable both in location and duration. Deployments have increasingly focused on enhancing partnerships and peacekeeping.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Malaria

Infographic
11/20/2018
Malaria

This report describes a cluster of 11 soldiers with vivax malaria among U.S. military personnel who trained at Dagmar North training area, near the demilitarized zone (DMZ), in the Republic of Korea (ROK) in 2015.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Cold Weather Injuries

Infographic
11/20/2018
Cold Weather Injuries

This update summarizes the frequencies, incidence rates, and correlates of risk of cold injuries among members of both active and reserve components of the U.S. Armed Forces during the past 5 years.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

DoD Flu VE

Infographic
10/26/2018
DoD Flu VE

Each season, several entities within the(DoD) perform surveillance for influenza among beneficiaries and utilize these data to perform VE analyses to estimate how well the seasonal vaccine protects against medically-attended influenza.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health | Influenza Summary and Reports

Psychiatric Medical Evaluations

Infographic
10/26/2018
Psychiatric Medical Evaluations

This study evaluated incidence of pre-deployment family problem diagnoses and psychiatric medical evacuations among a population of active component service members without a history of previous mental health diagnoses, who deployed to the U.S. Central Command Area of Responsibility for the first time between 1 January 2002 and 31 December 2014.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Division | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health
<< < ... 11 12 13 14 > >> 
Showing results 151 - 165 Page 11 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.