Back to Top Skip to main content Skip to sub-navigation

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image. Marines carry a wooden log for physical fitness.

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.


WHAT ARE THE NEW FINDINGS?    

In 2017, the prevalence of TRT use among active component service men was 4.7 per 1,000. Using the 2018 AUA clinical practice guidelines, only 44.5% of those receiving TRT had an indication to be on the medication.

 

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Out of every 1,000 male service members, almost 3 are inappropriately receiving TRT. Those being inappropriately treated may experience adverse effects of the medication, including obstructive sleep apnea, worsening of urinary tract symptoms, and edema. These adverse effects have the potential to impact deployability and medical readiness.

 

BACKGROUND

Testosterone deficiency, also known as hypogonadism or testicular hypofunction, is a combined biochemical and clinical syndrome in adult males characterized by low levels of circulating total testosterone that may adversely affect multiple organ systems and quality of life.1 In healthy men aged 18–50 years, total serum testosterone levels range from 300 ng/dl to 1000 ng/dl.2 These levels start to fall significantly after 50 years of age.2 The Baltimore Longitudinal Study of Aging found that 12% of men in their 50s and 50% of men in their 80s had total serum testosterone levels below 325 ng/dl.3 The average drop in testosterone is estimated at 3 ng/dl per year for men in their 50s and 11 ng/dl per year for men in their 80s.1 When hypogonadism is defined as a total serum testosterone level less than 300 ng/dl combined with symptomatic clinical criteria, the estimated prevalence of testosterone deficiency in the U.S. ranges from 5.6% to 6.5%.4 

The American Urological Association (AUA) 2018 guidelines for the evaluation and management of testosterone deficiency recommend that clinicians use a total serum testosterone level below 300 ng/dl as a reasonable cutoff in support of the diagnosis of low testosterone.5 An additional recommendation was that the laboratory diagnosis of low testosterone should be made only after 2 total testosterone level measurements below 300 ng/dl on serum specimens taken on separate occa­sions.5 Finally, the AUA recommendation for a clinical diagnosis of testosterone deficiency is at least 1 total testosterone level below 300 ng/dl in addition to appropri­ate physical, cognitive, and/or sexual signs and symptoms.5,6 These clinical signs and symptoms include fatigue, reduced energy, reduced endurance, diminished physical performance, loss of body hair, reduced lean muscle mass, obesity, depressive symptoms, cognitive dysfunction, reduced motivation, poor concentration, poor memory, irritability, reduced sex drive, and reduced erectile function.2,5 

Testosterone level testing and testosterone replacement therapy (TRT) prescriptions have tripled in recent years, and the estimated prevalence of TRT use among men in the U.S. is 0.9–2.9%.4,5 However, some men are prescribed TRT without an indication.5 The AUA estimates that up to 25% of men who eventually receive TRT do not have their testosterone levels checked prior to initiation of therapy. Furthermore, it is estimated that approximately 30% of men who are placed on TRT have no indication for the medication.5,7 The U.S. Department of Veterans Affairs (VA) also reported a marked increase in the number of veterans who requested TRT for low testosterone levels.8 As of 2015, more than 85,000 veterans had received TRT through the VA.9 Many of these veterans insisted that their symptoms were due to “low T,” despite having laboratory results indicating normal serum total testosterone levels.9 In the Military Health System (MHS), there also have been significant increases in the numbers of both TRT and testicular hypofunction diagnoses. From 2007–2011, males aged 25–44 years received androgen prescriptions at rates that increased 30% per year. During this same period, rates of medically coded hypogonadism increased over 40% per year.10 

There are significant side effects and risks associated with TRT. TRT has been associated with an increased risk of adverse cardiovascular, respiratory, and dermatologic events among older men.11 There is inconsistent evidence about the effects of TRT in a military age population (17–60 years). Several studies noted adverse effects of TRT in younger populations including topical transference, erythrocytosis, interference with fertility, worsening of severe lower urinary tract symptoms, suppression of spermatogenesis, fluid retention and edema, and obstructive sleep apnea (OSA).5,6 One recent study noted an increased risk of OSA but no increased risk of cardiovascular or thromboembolic events.12 With the increasing number of testosterone deficiency diagnoses and potential health risks associated with initi­ation of TRT, it is important to understand the epidemiology of receipt of TRT by U.S. service men and whether these individuals have an indication for receiving treatment. Previous studies of U.S. service men highlighted the need to connect individual prescriptions with a patient's androgen level in order to evaluate the appropriateness of prescribed TRT.10


METHODS

Data were obtained from the Defense Medical Surveillance System (DMSS), which contains records of ambulatory encounters and hospitalizations of active component service members of the U.S. Armed Forces in military and civilian (if reimbursed through the MHS) treatment facilities. The DMSS also contains administrative records for prescriptions dispensed to service members at military treatment facilities (MTFs) or through civilian Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care. In addition, laboratory data were obtained from the Navy and Marine Corps Public Health Center (NMCPHC), which include data from the Health Level 7 (HL7) database generated within the Composite Health Care System (CHCS) at fixed MTFs. Laboratory testing performed in civilian facilities is not captured in the HL7 database.

The prevalence of TRT utilization during 2017 was defined as the number of service men who had a dispensed prescription in 2017 with a therapeutic class code for androgens (excluding Danazol), among all male active component service members in the Army, Navy, Air Force, or Marine Corps in service during June 2017. Frequency and distribution of the dispensed androgen prescriptions were identified for each service man (Table 1). Covariates included service, age, military rank, race/ethnicity, military occupation, and marital status. Adjusted prevalence estimates were calculated using log binomial regression. All analyses were performed using SAS/STAT® software, version 9.4 (2014, SAS Institute, Cary, NC).

Laboratory tests and medical encounter history were examined for evidence of an indication for TRT among service men with a TRT prescription in 2017. NMCPHC was provided a line listing of service men who received a TRT prescription in 2017. NMCPHC then returned a line listing of those service men with total serum testosterone test results below 300 ng/dl. Total serum testosterone tests conducted prior to the last TRT prescription in 2017 were considered. Laboratory testing data were available for the period from May 2004 through 2017 for Navy service men and July 2006 through 2017 for all other service men. Electronic health records of service men with a TRT prescription in 2017 were also examined for a history of a qualifying diagnosis as indicated by any of the ICD-9 or ICD-10 codes presented in Table 2. These codes were identified after review of the relevant literature and current clinical practice guidelines from the Endocrine Society and the AUA.1,2,5,6 Service men were defined as having a prior indication for TRT if they met the AUA recommendations for 1) laboratory diagnosis (i.e., 2 total testosterone measurements less than 300 ng/dl) and/or 2) clinical diagnosis (i.e., at least 1 total testosterone measurement less than 300 ng/dl and at least 1 qualifying ICD-9 or ICD-10 diagnosis code).5 


RESULTS

During the 1-year surveillance period, a total of 5,093 active component service men had a filled prescription for TRT, yielding a crude period prevalence of 4.7 per 1,000 male service members (Table 3). Army service men had a higher prevalence of TRT use compared to men in the other service branches (6.3 per 1,000). Warrant officers (14.5 per 1,000) and senior officers (13.1 per 1,000) had a higher prevalence of TRT use compared to enlisted personnel (senior enlisted, 7.7 per 1,000; junior enlisted, 0.5 per 1,000) and junior officers (3.8 per 1,000). In addition, TRT use increased approximately linearly with increasing age as seen in Table 3. Non-Hispanic whites and American Indian/Alaska Native service men had the highest prevalence (5.6 per 1,000) compared to service men in other race/ethnicity groups, while non-Hispanic blacks (2.9 per 1,000) and Asian/Pacific Islanders (2.6 per 1,000) had the lowest. Healthcare workers had the highest prevalence (9.8 per 1,000) compared to those in other occupations, while motor transport workers had the lowest (2.2 per 1,000). Finally, service members who were never married had a TRT prevalence of 0.7 per 1,000, while married service men and those with “other/unknown” marital status had a prevalence of 7.5 and 8.1 per 1,000, respectively.

After adjusting for all covariates (Table 3), the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indian/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. 

Among the 5,093 active component male service members who received TRT in 2017, 25.6% met the laboratory diagnosis criterion of having at least 2 total testosterone measurements that were less than 300 ng/dl. In addition, 44.3% of the service men who received TRT met the clinical diagnosis criteria of having at least 1 total testosterone measurement less than 300 ng/dl and documentation of at least 1 qualifying diagnosis code. Nearly all (99%) of the service men who met the laboratory diagnosis criterion also met the clinical diagnosis criteria. Overall, 44.5% of those who received TRT met the case definition for an indication for TRT (Table 4). Nearly 2 out of every 3 service men in the Navy (65.4%) and service men aged 17–29 years (64.1%) who received TRT did so without an indication for TRT.


EDITORIAL COMMENT

The crude prevalence of TRT of 4.7 per 1,000 service men, or 0.5%, is well below the general U.S population estimate of 0.9–2.9%.1 This is expected since the U.S. Department of Defense (DoD) active component population is younger on average than the general population, is screened for pre-existing conditions prior to accession into the military, and includes few individuals over 60 years of age. In addition, there is a pronounced gradient of increasing prevalence of TRT use with increas­ing age. This pattern is consistent with the published literature on the civilian population and the known biological process of aging.2 

Before and after adjustment, there were pronounced differences in the prevalence of TRT use between some occupations. The increased prevalence of TRT use among healthcare workers may be related to medical knowledge, access to care, and/or availability of treatment. The higher prevalence observed among those in combat arms occupations could be related to the nature of their work and the associated clinical symptoms. These warfighters are chronically sleep deprived, and that can manifest as depression, fatigue, and irritability.13 In contrast, pilots and aircrew are anecdotally known for their refusal to seek care, even to the point of concealing illness and injuries, in order to maintain their flight status. Hypogonadism diagnoses result in pilots and aircrew losing their flight status14; they then must go through the medical waiver process to regain their certifications.14 This is a potential explanation for why the prevalence of TRT use in pilots and aircrew is much lower than among service men in other occupational groups. Even after adjustment, there remains an association between TRT and marital status. Compared to single service men, married service men may be more likely to seek care related to difficulties with conceiving a child or because of spousal encouragement to seek care for other comorbid conditions associated with hypogonadism.

Overall, 44.5% of those active component men who received TRT had an indication for receiving treatment when following the 2018 AUA clinical practice guidelines for the management of testosterone deficiency. The finding of 44.5% is substantially less than the AUA’s estimation for 70% in the civilian population; however, this could be related to differences in the age distributions of the study populations. The AUA estimation was derived from a 2015 study that used the North Shore University Health System Data Warehouse. However, the average age of the study population was 56 years.7 In contrast, in the current study, over 90% of the service men on TRT in 2017 were under the age of 50. Older men are more likely to have an indication for TRT because of a higher prevalence of hypogonadism.

This study was limited to active component service men, so comparisons with studies of the civilian population should be regarded with caution given the differences between the 2 populations in terms of age and health status. Furthermore, the data captured in this report may not represent service men’s true medical histories, as some members may have been evaluated by non-network civilian providers and pos­sibly paid the costs for this medical care out-of-pocket or through private health insurance. Diagnostic records, laboratory data, and prescription data associated with such non-network health care would not have been included in the current analysis. In addition, subjective signs and symptoms derived from questionnaires have been shown to have poor sensitivity whereas the clinical diagnosis criteria used in the current analysis were based upon a consolidation of definitions of hypogonadism reported in the published literature.1,2,5,6 Finally, in some general population studies, treatment for hypogonadism was based upon other criteria. The 2018 AUA guidelines were released after the surveillance period. Prior to the release of these guidelines, there were no commonly accepted standards for diagnosing hypogonadism.

During 2017, approximately 1 out of every 200 service men (0.47%) was treated with TRT. While this is a smaller percentage than that observed in the civilian population, it still represents a fairly large number of service men. Primary care providers in the MHS should be aware of the prevalence of TRT use in order to properly assess patients presenting with comorbid conditions. Furthermore, those providers who are considering initiating TRT should be aware of the 2018 AUA guidelines in order to reduce the frequency of TRT prescriptions that lack valid indications. The DoD might consider limiting initiation of TRT to those providers with appropriate board certification or other specialized training in order to limit the frequency of inappro­priate TRT prescriptions. Such a limitation could lessen the frequency of inappropriate prescriptions of long-term medications by physicians who have not yet completed residency training. Finally, future studies are recommended to examine whether the new clinical practice guidelines are improving the percentage of those receiving TRT who actually have an indication for treatment.


Author affiliations: Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD (LCDR Larsen); Armed Forces Health Surveillance Branch, Silver Spring, MD (CDR Clausen, Dr. Stahlman)


Acknowledgments: The authors thank the Navy Marine Corps Public Health Center, Portsmouth, VA, for providing laboratory data.


Disclaimer: The contents, views, or opinions expressed in this publication or presentation are those of the author(s) and do not necessarily reflect the official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense (DoD), or the Departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.


REFERENCES

1. Lunenfeld B, Mskhalaya G, Zitzmann M, et al. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. Aging Male. 2015;18(1):5–15.

2. Seftel AD. Male hypogonadism. Part I: Epidemiology of hypogonadism. Int J Impot Res. 2006;18(2):115–120.

3. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–731.

4. Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4-5):395–402.

5. Mulhall JP, Trost LW, Brannigan RE, et al. Evaluation and management of testosterone deficiency: AUA Guideline. J Urol. 2018;200(2):423–432.

6. Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society Clinical Practice Guideline. Journal Clin Endocrinol Metab. 2018;103(5):1715–1744.

7. Malik RD, Wang CE, Lapin B, Lakeman JC, Helfand BT. Characteristics of men undergoing testosterone replacement therapy and adherence to follow-up recommendations in metropolitan multicenter health care system. Urol. 2015;85(6):1382–1388.

8. Walsh TJ, Shores MM, Fox AE, et al. Recent trends in testosterone testing, low testosterone levels, and testosterone treatment among Veterans. Androl. 2015;3(2):287–292.

9. Boyle AM. VA educates patients about who really needs testosterone therapy. U.S. Medicine. 31 March 2015. http://www.usmedicine.com/agencies/department-of-veterans-affairs/va-educates-patients-about-who-really-needs-testosterone-therapy/. Accessed 27 February 2019.

10. Canup R, Bogenberger K, Attipoe S, et al. Trends in androgen prescriptions from military treatment facilities: 2007 to 2011. Mil Med. 2015;180(7):728–731.

11. Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. NEJM. 2010;363(2):109–122.

12. Cole AP, Hanske J, Jiang W, et al. Impact of testosterone replacement therapy on thromboembolism, heart disease and obstructive sleep apnoea in men. BJU Int. 2018;121(5):811–818.

13. Naval Medical Aerospace Institute. U.S. Navy Aeromedical Reference and Waiver Guide. https://www.med.navy.mil/sites/nmotc/nami/arwg/pages/aeromedicalreferenceandwaiverguide.aspx. Published 27 November 2018. Accessed 27 February 2019.

14. Department of Defense, Office of the Deputy Assistant Secretary of Defense for Military Community and Family Policy (ODASD (MC&FP)). 2015 demographics: profile of the military community. http://download.militaryonesource.mil/12038/MOS/Reports/2015-Demographics-Report.pdf. Accessed 27 February 2019.

Frequency and distribution of androgen prescriptions dispensed to 5,093 active component males on TRT in 2017, by drug name
ICD-9 and ICD-10 codes for TRT indication
Crude and adjusted prevalence, by demographic and military characteristics, active component males who received TRT in 2017

Percent of active component males who received TRT in 2017 who met criteria for laboratory diagnosis, clinical diagnosis, and indication for TRT (N=5,093)


You also may be interested in...

Medical evacuations out of the U.S. Central Command, active and reserve components, U.S. Armed Forces, 2018

Article
5/1/2019
Airmen from the 19th Medical Group litter-carry a simulated patient onto a C-130J during an aeromedical evacuation training mission at Little Rock Air Force Base in 2019. (Photo Courtesy of U.S. Air Force)

The number of medical evacuations for battle injuries has decreased considerably since 2014. Most medical evacuations in 2018 were attributed to mental health disorders, followed by non-battle injury/poisoning; signs, symptoms, and ill-defined conditions; musculoskeletal disorders; and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and healthcare burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through September, and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

Article
4/1/2019
A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to healthcare providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal—the white-tailed deer.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 6 7 8 9 10 > >> 
Showing results 121 - 135 Page 9 of 10

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.